

Cost-Effectiveness of Bivalent Respiratory Syncytial Virus Prefusion F Maternal Vaccine for Protection of Infants in the United States

Ahuva Averin, MPP¹; Erin Quinn, BS¹; Mark Atwood, MS¹; Derek Weycker, PhD¹; Kimberly M. Shea, PhD²; Amy W. Law, PharmD, MS² ¹Avalere Health, Boston, MA; ²Pfizer Inc., New York, NY

INTRODUCTION

- Seasonal administration of bivalent respiratory syncytial virus prefusion F vaccine (RSVpreF) was recently recommended by the United States (US) Advisory Committee on Immunization Practices (ACIP) among pregnant persons between 32-36 weeks of gestation to protect their infants against lower respiratory tract illness due to respiratory syncytial virus (RSV-LRTI)
- Cost-effectiveness is a critical part of the evidence to recommendation framework to determine if the RSVpreF is an efficient use of resources

OBJECTIVES

- To evaluate the cost-effectiveness of the current recommendation for maternal RSVpreF use compared with no intervention
- To evaluate the cost-effectiveness of hypothetical recommendations for maternal RSVpreF use including expanded seasonal and year-round vaccination—compared with no intervention

RESULTS

Base Case

Maternal vaccine versus no intervention is dominant (i.e., more effective and lower cost) under the current recommendation, resulting in 89,908 fewer RSV episodes (hospital: 10,308; ambulatory: 79,601) and total costs lower by \$18 million (Table 1)

Scenario Analyses

- Expanding the administration window further reduces RSV cases (vs. the current recommendation) by 20% for August-January, 49% for June-February, 55% for May-February, and 58% for year-round vaccination
- Incremental cost-effectiveness of RSVpreF (vs. no intervention) was <\$90,000/QALY in all scenarios, including the scenario with year-round administration

Deterministic Sensitivity Analyses

METHODS

Model Overview

- A population-based cohort model was used to evaluate clinical outcomes and economic costs of RSV during first year of life, and expected impact of vaccination with RSVpreF compared to no intervention:
- Clinical outcomes included cases of medically attended RSV by care setting (i.e., hospital [RSV-H], emergency department [RSV-ED], outpatient clinic [RSV-OC]), attributable deaths, and total QALYs
- Economic costs included direct costs related to medical care and vaccination, as well as indirect costs related to caregiver work loss and future lost earnings associated with premature RSV-related death
- Population was characterized by age, calendar month of birth, and term status defined by gestational age in weeks (wGA) at birth (full-term, ≥37 wGA; late preterm, 32-36 wGA; early preterm, 28-31 wGA; extreme preterm, ≤27 wGA)

Estimation of Model Inputs

- Number of persons giving birth (N = 3.71 M) and number of infants born in a single year (N = 3.75M) by wGA at birth, were based on CDC WONDER data¹
- Incidence of RSV was assumed to vary by age, term-status, and calendar month^{2,3,4} (Table 1)
- Case-fatality due to RSV-H was invariant by age (full term, 0.8 per 100; preterm, 0.1 per 100)^{5,6}
- Age- and term-specific rates of background mortality were obtained from CDC WONDER data¹
- Effectiveness by care setting was estimated from primary/secondary/exploratory endpoints from MATISSE (Figure 1)⁷
- Cost per RSV episode, by age and care setting (RSV-H: \$11,371-177,436; RSV-ED: \$1,420-3,157; RSV-OC: \$312-907), were based on a recently published study utilizing the MarketScan Commercial Claims and Encounters and Medicaid Multi-State Databases (2016-2018)⁸
- Vaccination costs included drug acquisition (\$295) and administration (\$24)^{9,10}
- Vaccine-related adverse events included injection site reaction which occurred at a rate of 410 per 1,000 based on clinical trial data and was assumed to cost \$7.31 per person^{11,12}
- Caregiver morbidity costs (RSV-H: \$984; RSV-ED: \$499; RSV-OC: \$382) were estimated using labor force participation rates, average work-loss days and average daily wage^{13,14}

Even in scenarios with initial VE and RSV-H costs, respectively, 20% lower than base case input values, cost-effectiveness remains <\$50,000/QALY

Table 2. Clinical outcomes and economic costs among US infants aged <1 year with use of maternal vaccine vs. no intervention for prevention of RSV

		Difference in Outcomes (vs. No Intervention)								
		Base Case	Scenario Analyses							
		September-	August-	June-						
	No Intervention	January	January	February	May-February	Year-Round				
Clinical outcomes										
No. RSV cases										
Hospital	48,384	-10,308	-11,340	-12,875	-13,133	-13,349				
ED	246,118	-20,538	-24,875	-30,669	-31,786	-32,414				
OC	854,465	-59,062	-71,402	-90,279	-94,199	-96,540				
No. RSV-related deaths	110	-17	-19	-21	-22	-22				
QALYs*	101,563,275	1,544	1,790	2,150	2,218	2,264				
Economic costs (millions)										
Direct costs										
Medical care	\$1,660.3	-\$282.3	-\$310.4	-\$353.5	-\$360.1	-\$366.3				
Maternal vaccination	\$0.0	\$315.4	\$372.2	\$537.2	\$590.0	\$643.1				
AEs	\$0.0	\$3.0	\$3.5	\$5.0	\$5.5	\$6.0				
Subtotal direct	\$1,660.3	\$36.1	\$65.3	\$188.8	\$235.4	\$282.8				
Indirect costs	\$556.6	-\$53.7	-\$62.6	-\$75.5	-\$78.0	-\$79.6				
Total costs	\$2,216.9	-\$17.7	\$2.7	\$113.3	\$157.4	\$203.2				

*QALYs estimated based on infant QALYs minus caregiver QALY loss

Figure 2. Incremental cost-effectiveness ratios (\$/QALY) for base case and scenario analyses

- Cost of infant mortality due to premature death from RSV-LRTI (\$676,718) was based on expected future earnings¹³⁻¹⁵
- Baseline utility value for healthy infants assumed to be 1; QALY loss was estimated to be 0.0157 for RSV-H and 0.0061 for RSV-ED/OC for all infants¹⁶; caregiver QALY loss was estimated to be 0.0066 for RSV-H, 0.0068 for RSV-ED, and 0.0041 for RSV-OC¹²

Analyses

- Cost-effectiveness of RSVpreF versus no intervention was estimated as cost per QALY
- Base case assumes current ACIP recommendation whereby pregnant persons who are 32-36 weeks gestation between September-January are eligible for vaccination
- Scenarios exploring the impact of expanded seasonal administration from August-January, June-February, and May-February, as well as year-round vaccination are reported
- Scenario analyses considering 6- and 12-month duration of protection and an analysis considering the healthcare system perspective also were conducted
- Deterministic sensitivity analyses (DSA) in which vaccine effectiveness and cost of RSV-H were varied by ±20% were conducted
- In all analyses, uptake of RSVpreF was 54.9% during all months in which vaccine was administered¹⁷
- Costs are reported in 2023 US\$; costs and QALYs were discounted 3% annually

Table 1. Rates of RSV per 1,000 by care setting, age, and term status

	Month of Age											
	<1	1 - <2	2 - <3	3 - <4	4- <5	5 - <6	6 - <7	7 - <8	8 - <9	9 - <10	10 - <11	11 - <12
Hospital												
Full term	18	31	22	16	14	11	10	8	7	8	6	6
Late preterm	31	54	39	39	34	27	16	14	12	14	10	10
Early & extr. Preterm	8	15	11	37	32	26	66	55	50	57	41	41
Emergency department												
Full term	20	64	72	105	116	71	82	56	56	56	40	56
Late preterm	34	112	126	260	287	176	140	96	95	95	69	95
Early & extr. preterm	9	30	34	250	276	169	559	383	380	380	276	380

Table 3. Results from sensitivity and scenario analyses

	Difference in Outcomes for RSVpreF vs. No Intervention									
		RSV-Amb		Direct Costs	Indirect Costs	ICER				
	RSV-H Cases	Cases	QALYs	(millions)	(millions)	(per QALY)				
Sensitivity										
VE 80% of base case	-8,246	-63,680	1,235	\$93	-\$43	\$40,093				
VE 120% of base case	-11,701	-95,521	1,808	-\$6	-\$63	Dominant				
RSV-H cost 80% of base case	-10,308	-79,601	1,544	\$80	-\$54	\$17,120				
RSV-H cost 120% of base case	-10,308	-79,601	1,544	-\$8	-\$54	Dominant				
Scenario										
6 mo. duration of protection	-10,213	-77,434	1,514	\$38	-\$53	Dominant				
12 mo. duration of protection	-10,476	-84,117	1,601	\$32	-\$56	Dominant				
Healthcare system perspective	-10,308	-79,601	1,544	\$36		\$23,349				

LIMITATIONS

- Several potential benefits of vaccination are not captured in the model (e.g., direct impacts of vaccination on pregnant people or indirect impact on other populations)
- Lacking clinical trial data beyond age 6 months, waning of RSVpreF effectiveness from age 6-<10 months was informed by evidence on kinetics and decay of maternal transferred antibodies following natural infection and vaccination¹⁸⁻²⁰
- Outcomes in model do not necessarily align with prespecified endpoints in MATISSE

Outpatient clinic

Full term	85	188	234	233	265	289	265	207	278	227	242	258
Late preterm	148	327	408	575	655	715	452	354	474	388	413	441
Early & extr. preterm	40	89	111	553	630	687	1,807	1,415	1,897	1,551	1,650	1,762

Figure 1. Effectiveness of RSVpreF by age

• Cost of RSV based on a single database which may not be nationally representative; costs may also be somewhat overestimated because they are based on episodes of RSV-LRTI

CONCLUSIONS

- Under current US ACIP recommendation, seasonal administration of maternal RSVpreF is a cost saving intervention for reducing RSV among infants
- Expanding maternal RSVpreF recommendations to include year-round administration would remain highly cost-effective and should be considered by policymakers to maximize protection against RSV, especially for infants born in regions where RSV season extends beyond October-March

REFERENCES

- NVSS, Mortality 1999-2020 on CDC WONDER Online Database. 2021.
- Curns A, et al. Pediatrics. 2024;153(3)
- Lively J, et al. J Pediatric Infect Dis Soc. 2019;8(3):284-286.
- Rha B, et al. *Pediatrics*. 2020;146(1):2019-3611
- Li X, et al. Value Health. 2023;26(4):508-518.
- Hansen CL, et al. JAMA Netw Open. 2022;5(2).
- Munjal I. A. Bivalent RSVpreF Vaccine to Protect Against Infant Illness Through Immunization of Pregnant Individuals and Older Adults Via Direct Immunization. Presentation at the World Vaccine Congress; 2024; Washington, D.C.
- Averin A, et al. J Infect Dis. 2024.
- Hutton D. Economic Analysis of Nirsevimab in Pediatric Populations. Presentation at: ACIP February 2023; Atlanta, GA.
- Granade CJ, et al. JAMA Network Open. 2020;3(4):e203316-e203316. 10.
- Kampmann B, et al. N Engl J Med. 2023;388(16):1451-1464. 11.
- Hutton D. Economic Analysis of Nirsevimab in Pediatric Populations. Presentation at: ACIP February 2023; Atlanta, GA.
- Civilian labor force participation rate by age, sex, race, and ethnicity. US BLS. 2020. 13.
- Weekly and hourly earnings data from the Current Population Survey, 2021. US BLS. 14. 2022
- Arias E, Xu J. United States Life Tables, 2018. National Vital Statistics Reports. 15. 2020;69(12).
- Hodgson D, et al. Influenza Other Respir Viruses. 2020;14(1):19-27. 16.
- Lindley M, et al. Morb Mortal Wkly Rep. 2019;68(40):885-892. 17.
- Chu HY, et al. J Infect Dis. 2014;210(10):1582-1589
- Shook LL, et al. JAMA. 2022;327(11):1087-1089. 19
- Waaijenborg S, et al. J Infect Dis. 2013;208(1):10-16. 20.

ISPOR Europe 2024 (November 17th – 20th, Barcelona, Spain)

This study was sponsored by Pfizer Inc.