A cost-effectiveness analysis of trastuzumab deruxtecan versus trastuzumab emtansine in patients with human epidermal growth factor receptor 2-positive unresectable or metastatic breast cancer in Portugal

André Andrade,¹ Rita Sousa,¹ Élia Almeida,² Beatriz Macedo,² Ana Lúcia Tavares,¹

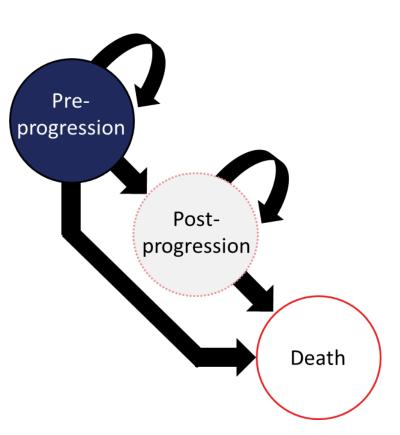
¹ AstraZeneca Produtos Farmacêuticos, Lda., Portugal; ² Daiichi Sankyo Portugal, Unipessoal Lda., Portugal

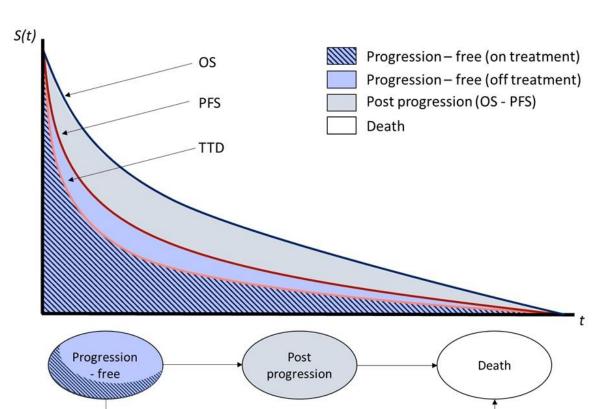
Objectives

• To assess the cost effectiveness of trastuzumab deruxtecan (T-DXd) versus trastuzumab emtansine (T-DM1) in patients with human epidermal growth factor receptor 2 (HER2)-positive unresectable or metastatic breast cancer (uBC/mBC) who have received one prior anti-HER2-based regimen, considering the standard clinical practice in Portugal, and its costs.

Conclusions

• T-DXd is associated with increased costs, life-years (LYs), and additional quality-adjusted life-years (QALYs) compared with T-DM1 for patients with HER2-positive uBC/mBC who had received one prior anti-HER2-based regimen. This cost-effectiveness analysis presented resulting incremental costeffectiveness ratios (ICERs) of 31,086€/LY and 25,260€/QALY and was considered valid to support the reimbursement decision by the local health authority.


Background


- Breast cancer is the most common malignancy among women globally.¹ Approximately 20% of patients with breast cancer have HER2-positive breast cancer.²⁻³
- T-DXd is an antibody-drug conjugate composed of an anti-HER2 antibody, a tetrapeptide-based cleavable linker, and a topoisomerase I inhibitor payload. 4-5
- In the phase 3 trial DESTINY-Breast03 (DB-03), T-DXd showed a significantly improved overall survival (OS) (HR 0.64, p=0.0037) and the longest reported median progression-free survival (PFS), 28.8 months versus 6.8 months (HR 0.33, p<0.0001), compared with T-DM1 in patients previously treated with a taxane and trastuzumab.6

Methods

Effectiveness model

- A 3-state partitioned survival model (PSM) was developed to evaluate the cost effectiveness of T-DXd in adult patients with unresectable or metastatic HER2-positive breast cancer who have received one or more prior anti-HER2 regimens, reflecting the natural history of the disease. Patients entered the model in the progression-free state and receive either T-DXd or T-DM1 and can remain progression-free, their disease can progress, or they can die. Patients in the post-progression state cannot return to the progression-free state, but they can remain alive in the post-progression state or die. Death is an absorbing state, meaning patients remain there permanently (Figures 1 and 2).
- The analysis was conducted from the Portuguese National Health Service perspective assuming a 4% discount rate for costs and consequences and a lifetime time horizon (37 years).

Clinical Data Figure 1. Three-state Model Structure

Figure 2. Transitions between health states in PSM

- The time-to-event data from the DB03 study were used to inform efficacy in the T-DXd and T-DM1 arms of the model.
- Parametric models were fitted to time-to-event data for PFS, OS, and time-to-treatment discontinuation (TTD). The proportional hazards assumption was assessed to determine whether these models could be fitted to the entire dataset with the treatment group included as a covariate in the analysis.
- Following the recommendations of NICE technical support document 14, the base case parametric distributions applied for each survival curve were based on goodness-of-fit criteria (Akaike and Bayesian information criteria) and clinical plausibility. (Table 1).

Adverse Events (AEs)

• The model included AEs with a severity of Grade 3 or higher when 5% or more of patients in one of the treatment arms of DB-03 experienced the AE.

Utilities

• The quality-of-life data collected in DB-03 (EQ-5D-5L) was computed using the Portuguese value sets and used in the model.⁷ The model base case scenario uses the utility values of 0.8214 and 0.8046 in the progression-free health state for T-DXd and T-DM1, respectively (from DB-03), and applies utility values calculated with the Lloyd algorithm for progressed disease - 0.5403 for T-DXd and T-DM1.

Costs • The model included costs associated with drug acquisition, treatment administration, healthcare resources use, subsequent therapy, end-of-life and AEs obtained from Portuguese databases and literature.

Table 1. Distribution used for each health state

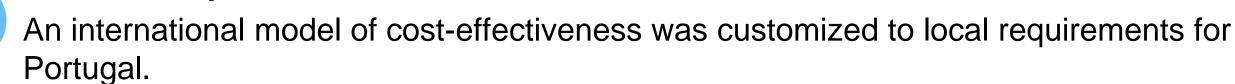
Curve	Distribution
PFS (T-DXd)	Log normal
PFS (T-DM1)	Log normal
OS (T-DXd)	Log-logistic
OS (T-DM1)	Log-logistic
TTD (T-DXd)	Log normal
TTD (T-DM1)	Log normal

Table 3. Healthcare resources cost per model cycle

Item	Cost per cycle			
Medical visit	23.25€			
CT scan	24.65€			
Biochemistry	6.20 €			
Hemogram	4.70 €			

Table 2. Adverse events cost Healthcare resources cost per model cycle

	01
Grade 3-4 adverse event	Cost
Neutrophil count decreased	1,030.96€
Anaemia	1,208.19€
White blood cell count decreased	988.31 €
Platelet count decreased	345.56 €
Nausea	798.79€
Fatigue	1,270.88€
Increased aspartate aminotransferase	2,438.32€
Interstitial lung disease	3,238.53€
Left ventricular ejection fraction decreased	3,127.59€
Thrombocytopenia	345.56 €


Plain language summary

Why did we perform this research?

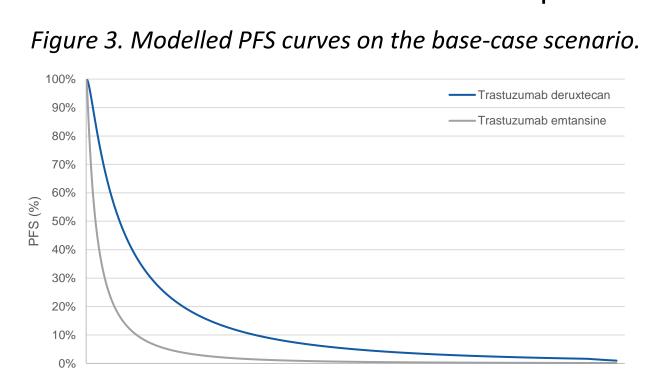
The Portuguese Health Technology Assessment System requires the submission of evidence of economic value, usually through an economic study, to support decision-making in the local reimbursement/funding process.

How did we perform this research?

What were the findings of this research?

Treatment with T-DXd resulted in increased life expectancy and quality of life compared with T-DM1. The cost-effectiveness analysis was accepted and considered appropriate to support the reimbursement decision by the health authority.

What are the implications of this research?

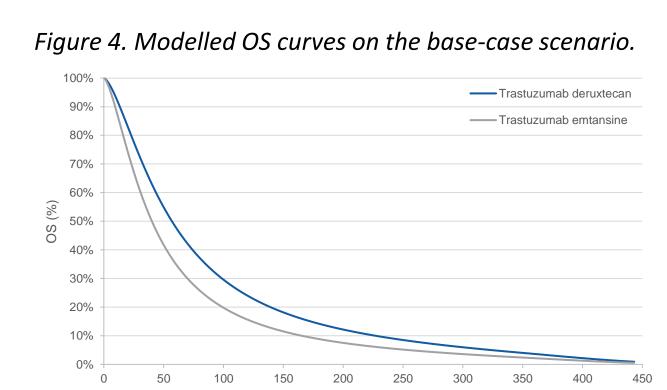

T-DXd is recommended in adult patients with unresectable or metastatic HER2-positive breast cancer who have received one or more prior anti-HER2 regimens, in the Portuguese National Health Service.

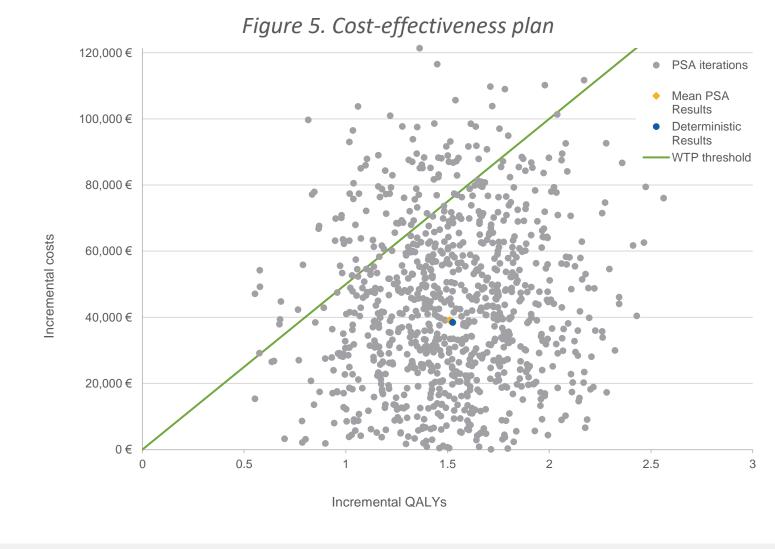
Definitions T-DXd: T-DXd is an antibody-drug conjugate, which is a chemotherapy with a linker (deruxtecan) joined to an antibody (trastuzumab). Trastuzumab binds a protein found on cancer cells called HER2, where it releases the chemotherapy to kill these cells. [By binding to the cancer cell before releasing the chemotherapy, T-DXd reduces the level of chemotherapy exposed to the whole body so less side effects are seen]; Unresectable: a tumor that cannot be completely removed with surgery (unresectable); Metastatic: cancer that has spread from its original site (metastatic); HER2-positive: cells with a higher than normal level of a protein called HER2 (HER2positive).

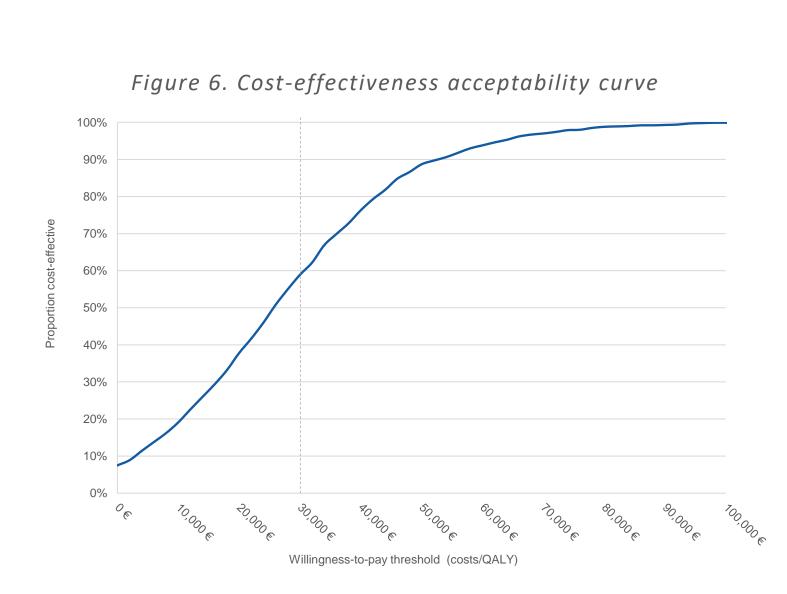
Results

Base-case scenario

• The modelled curves for each treatment arm are presented in Figures 3 and 4, and cost-effectiveness results for the base-case scenario are presented in Table 4.




Table 4. Cost-effectiveness results for the base-case scenario.


Costs outcomes	T-DXd	T-DM1	Health outcomes	T-DXd	T-DM1
Treatment	168,196.16€	58.904.97€	Health state – QALYs		
Treatment administration	912.61 €		Progression-free health state	3.36	1.21
Treatment administration	912.01€	435.33 €	Post-progression health state	1.07	1.70
Healthcare resources	5,910.10€	4,643.20 €	Total	4.43	2.91
Subsequent treatment	66,005.49€	139,019.57 €	Health state – LYs		
Adverse events	345.05€	368.17€	Progression-free health state	3.75	1.35
End-of-life	956.62€	445.56 €	Post-progression health state	2.03	3.19
Total	242,326.03 €	203,816.80 €	Total	5.78	4.54

• T-DXd was more effective than T-DM1, leading to a mean of 1.24 additional LYs (5.78 versus 4.54) and a mean of 1.52 additional QALYs (4.43 versus 2.91) per patient. The modelled median percentage of patients alive at 10 years was 24.1% for T-DXd and 15.7% for T-DM1. T-DXd versus T-DM1 was associated with ICERs of 31,086€/LY and 25,260€/QALY.

Sensitivity analysis

• Model robustness was demonstrated through scenario analyses. The probabilistic sensitivity analysis (PSA) also showed robust results, with probabilistic ICERs of 31,863€/LY and 25,937€/QALY. The cost-effectiveness acceptability curve shows that at a willingness-to-pay threshold of 30,000€ T-DXd has a probability of cost effectiveness of approximately 58.9% (Figures 5 and 6).

Acknowledgments

This study is sponsored by AstraZeneca. In March 2019, AstraZeneca entered into a global development and commercialization collaboration agreement with Daiichi Sankyo for trastuzumab deruxtecan (T-DXd; DS-8201)

Disclosures

All authors disclose employment by AstraZeneca / Daiichi Sankyo. Poster presented ISPOR Europe 2024, November 17-20, Barcelona, Spain. Corresponding author email address: andre.andrade@astrazeneca.com

References

- 1. International Agency for Research on Cancer. Estimated number of incident
- cases worldwide, females, all ages. 2022. 2. Morales S, Gasol A, Sanchez DR. Her2-Positive Cancers and Antibody-Based Treatment: State of the Art and Future Developments. Cancers.
- 2021; 13(22):5771. https://doi.org/10.3390/cancers13225771 3. Wolff AC, Hammond ME, Hicks DG et al. American Society of Clinical Oncology; College of American Pathologists. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American

Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013 Nov 1;31(31):3997-4013. doi: 10.1200/JCO.2013.50.9984. Epub 2013 Oct 7. PMID: 24101045.

- 4. Nakada T, Sugihara K, Jikoh T et al. The Latest Research and Development into the Antibody-Drug Conjugate, [fam-] Trastuzumab Deruxtecan (DS-8201a), for HER2 Cancer Therapy. Chem Pharm Bull (Tokyo). 2019;67(3):173-185. doi: 10.1248/cpb.c18-00744. PMID: 30827997.
- 5. Ogitani Y, Aida T, Hagihara K, et al. T. DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clin Cancer Res. 2016 Oct 15;22(20):5097-5108. doi: 10.1158/1078-0432.CCR-15-2822. Epub 2016 Mar 29. PMID: 27026201.
- trastuzumab emtansine in patients with HER2-positive metastatic breast cancer: updated results from DESTINY-Breast03, a randomised, open-label, phase 3 trial. Lancet. 2023 Jan 14;401(10371):105-117. doi: 10.1016/S0140-6736(22)02420-5. Epub 2022 Dec 7.

6. Hurvitz SA, Hegg R, Chung WP et. al. Trastuzumab deruxtecan versus

7. Ferreira PL, Antunes P, Ferreira LN, et al. A hybrid modelling approach for eliciting health state preferences: the Portuguese EQ-5D-5L value set. Qual Life Res. 2019 Dec;28(12):3163-3175. doi: 10.1007/s11136-019-02226-5. Epub 2019 Jun 14. PMID: 31201730.