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Obijective: How did we perform the Al-driven search?

Computable operational definitions (CODefs)
are essential for identifying patient cohorts in
real-world evidence (RWE) studies. However, Al-driven Lit Review Screening Tagging CODef Creation
manual development of these phenotypes is
time-consuming and often lacks

C o We developed a search The articles were screened A tagging hierarchy Information from the literature
standardization or validation.

strategy to identify algorithms for relevance to LC and for identified therapeutic and review was used to create the

L . for Lung Cancer (LC) the presence of . o CQODefs for each relevant
The objective is to evaluate the feasibility and (Figure 1). CODef-related terminology coding definitions (e.g., concept, covering different data

effectiveness of using artificial intelligence (Al) or validation statistics ICD-10-CM, CPT, variable types and value set

software to identify algorithms used in CODefs We executed a ‘living’ search (Figure 2). SNOMED), of LC concepts lists (Figure 4)
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using Al tagging

*Online Poster
articles (Figure 3).

Results: The Al-supported search returned 240 studies for screening, of which 94 were excluded for having a <.1
probability of inclusion by the Al model. Twenty-three studies were included and underwent full-text tagging with
Al-driven smart tagging recommendations reviewed and applied by team members. The tagging process yielded 31
algorithms for identifying patients with LC which included three algorithms for distinguishing small cell LC and 10 for
identifying non-small cell LC within the data sets with varying algorithmic accuracy. The software allowed algorithms to
be downloaded to an excel sheet so CODef performance could be compared and referenced for future RWE research.
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Figure 2: Screening

Lung Cancer CODef Nest

Standard: 2009 @i Prior Publication: ( mm/dd/yyyy )

Identification of new studies via databases and registries Identification of new studies via other methods ; y
Indication: Lung Cancer
Records identified from: Records removed prior to Records identified via:
—» Screening:
PubMed (n=237) Expert Recommendation {(n=3) J—— Value
Duplicate records removed (n=0)
l Label Indication: Lung Cancer
Records Screened (n=237) —» Records excluded (n=213) Verskon ey 13t
Algorithm not used to identify gt

disease state of interest (n=5)
Animal Study (n=1)

Delayed release (n=1)
Editorial or Opinion (n=1) Elements
Identifies TA complications (n=6)
Inclusion Probability =.1 (n=94)
Irrelevant Study (n=65) s
No ICD 10 Data (n=4)

Population doesn’t have lung [“""' ‘‘‘‘ ]
cancer {(n=34)
systematic review of Element” 4 Conceptual Definition Operational Definition Justifications, Algorithms, Limitations, & Notes Associated Value Sets
algorithms (n=2)

Cancer Type: Non-Small Cell Lung Cancer (NSCLC) [L_m' il i

Reports sought for retrieval Reports not retrieved (n=0) Reports sought for retrieval Reporis not retrieved (n=0) Non-Small Cell Lung Cancer (NSCLC) (21 dx lung cancer and 21 NSCLC cancer fype) Algorithms Lung Cancer Diagnoss 0]
‘_‘24) (n: 2) Diagnosis of lung cancer 1 Diagnasis Record from Lung Cancer Diagnosis
o Diag Respiratory C [Nagasaki 2019
l l AND AND
[Cunc:r type: nen-small cell lung (Il\(l.‘f] [C:ncer Type:nan small cell lung cancer ]
Reporis assessed for eligibility Reporis excluded (n=0) Reporis assessed for eligibility Reporis excluded (n=0)
(n=24) (n=2) ,
Non-Small Cell Lung Cancer (NSCLC) {21 dx lung cancer and 21 [Diagnmi: of Non-Small Cell Lung Cancer INSCLCI-] [= 1 Dingnasis Record from Lung Cancer D'ognmis] Aigorithms Crizotinib Therapy
l 21 Diagnosis of Respiratory Cancer [Nagasaki 2019] Erlotinib Theragy (7
AND TR S
Studies included in review (n=25) [ ] Lung Cancer Diagnosis (7
2 1 Met cord fra i her
Reportis of included studies =2
(n=26) or
[: 1 Medication Recoed from Crizo 1

Conclusion: Al-assisted identification of algorithms for CODefs is feasible and faster than reviewing articles manually. This
approach has the potential to accelerate research timelines and improve reproducibility, as coding methods continue to evolve.
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