

Impact of 2019 Diabetes Guideline on Prescription Patterns of Antidiabetic Drugs for Patients with Type 2 Diabetes

RWD79

Daniel Gu¹, Jee Choe¹, John A Romley¹

¹USC Mann School of Pharmacy

INTRODUCTION

Motivation

- Each year, the American Diabetes Association
 (ADA) publishes a new version of the
 "Standards of Care in Diabetes," which
 includes recommendations for
 pharmacological approaches to glycemic
 control in patients with type 2 diabetes
- Mirroring the FDA's recognition of cardiovascular considerations in diabetes treatment, the ADA revised the "Pharmacologic Approaches to Glycemic Treatment" section of its guideline in 2019 to echo the ADA-EASD consensus report, making the guideline start considering key patient factors like:
 - ➤ atherosclerotic cardiovascular diseases
 - chronic kidney disease
 - heart failure, etc.
- In short, SGLT2 and GLP-1 with proven cardiovascular benefit are recommended according to the risk imposed and GLP-1s are recommended to be the first injectable medication in general

Objective

 This study aims to investigate the impact of the 2019 diabetes guideline on the prescription patterns of antidiabetic drugs for patients with type 2 diabetes

METHODS

Study Design

Segmented linear regression analysis

Data

- Optum Clinformatics Data Mart
- Non-insulin glucose-lowering medications prescribed for type 2 diabetes
- January 1st 2018 to December 31st 2019

Variables of Interest

• Prescription rates $Rate_{i,t}$ were quantified quarterly as a proportion of the number of prescriptions for each drug:

- $Rate_{i,t} = \beta_{0,i}$
- $+oldsymbol{eta}_{1,i} \cdot time_{i,t}$
- $+oldsymbol{eta}_{2,i}$
- \cdot Indicator(Guideline Publish_{i,t})
- $+\beta_{3,i}\cdot\left(time_{i,t}-TimeOfPublish_{i,t}\right)$
- $+e_{i,t}$
- β_0 , baseline level of the rate
- β_1 , pre-Guideline trend
- β_2 , any immediate (i.e., level) effect of the guideline publication
- β_3 , any post-guideline trend effect

RESULTS

- Table 1 shows that the pseudo-cohorts have balanced characteristics:
 - Approximately 62% of the nearly 2 million patients prescribing in both years
 - The cohort exhibited a mean birth year of 1953
 - > 51% being female
- In Table 2, the analysis revealed statistically significant changes (p-value > 0.05) in both the level and trend of the prescription rates following a structural break between the fourth and fifth quarters
- Notable exceptions:
 - Empagliflozin, semaglutide, and metformin, have inconclusive level change post-interruption
 - Dapagliflozin and lixisenatide, have inconclusive the trend impact

Table 1: Descriptive statistics of the sample 1,962,790 Total sample size 2019 Q4 Q5 2018 1,152,540 1,168,136 1,505,879 1,586,364 50.40% 51.00% 51.00% 50.30% 1953 Year of Birth 1953 1954 1953 12.54 13.2 12.58 13.31 Patients only in Pre 456,310 51.60% Year of Birth 15.19 Patients only in Post 375,475 51.70% 14.14 Patients only in Q4

266,664

51.50%

1955

13.76

250,915 51.10%

1955

13.52

Table 2: Regression results

Year of Birth

(SD)

Patients only in Q5

	Level origin	Trend origin	Level interruption	Trend interruption
	$oldsymbol{eta}_0$	$oldsymbol{eta_1}$	$oldsymbol{eta}_2$	$oldsymbol{eta}_3$
Empagliflozin	2.13%	0.28%	0.10%	0.09%
p-value	0	0	0.129	0.017
Canagliflozin	2.72%	-0.07%	-0.13%	0.04%
p-value	0	0	0.003	0.012
Dapagliflozin	0.42%	0.00%	-0.19%	0.00%
p-value	0	0.459	0	0.53
Liraglutide	2.41%	0.01%	-0.10%	-0.07%
p-value	0	0.024	0.002	0
Semaglutide	-0.03%	0.02%	-0.13%	0.29%
p-value	0.527	0.188	0.056	0
Exenatide ER	0.67%	0.04%	-0.05%	-0.05%
p-value	0	0	0.014	0.001
Lixisenatide	0.08%	0.03%	0.00%	-0.01%
p-value	0	0	0.603	0.055
Metformin	53.96%	-0.12%	-0.09%	-0.08%
p-value	0	0.003	0.214	0.033

Figure 1: Prescription rate of drugs in different classes of anti-diabetics

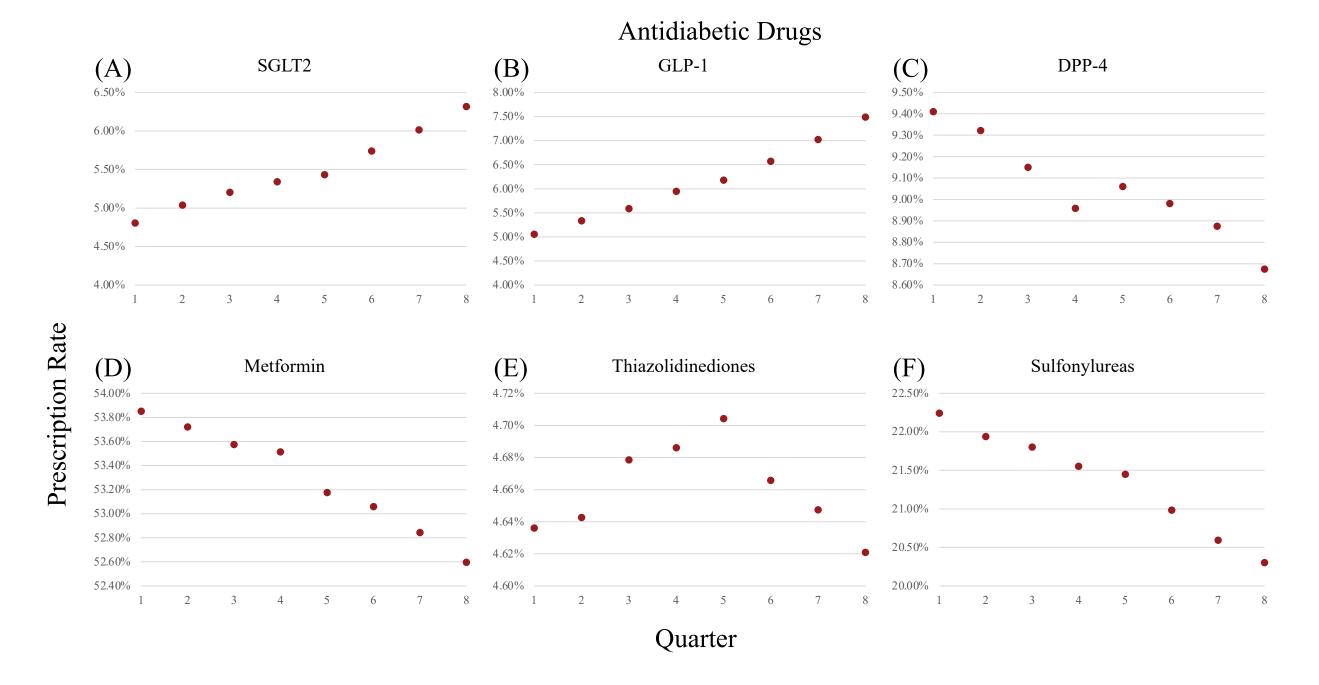


Figure 2: Prescription rate of drugs in SGLT2 class

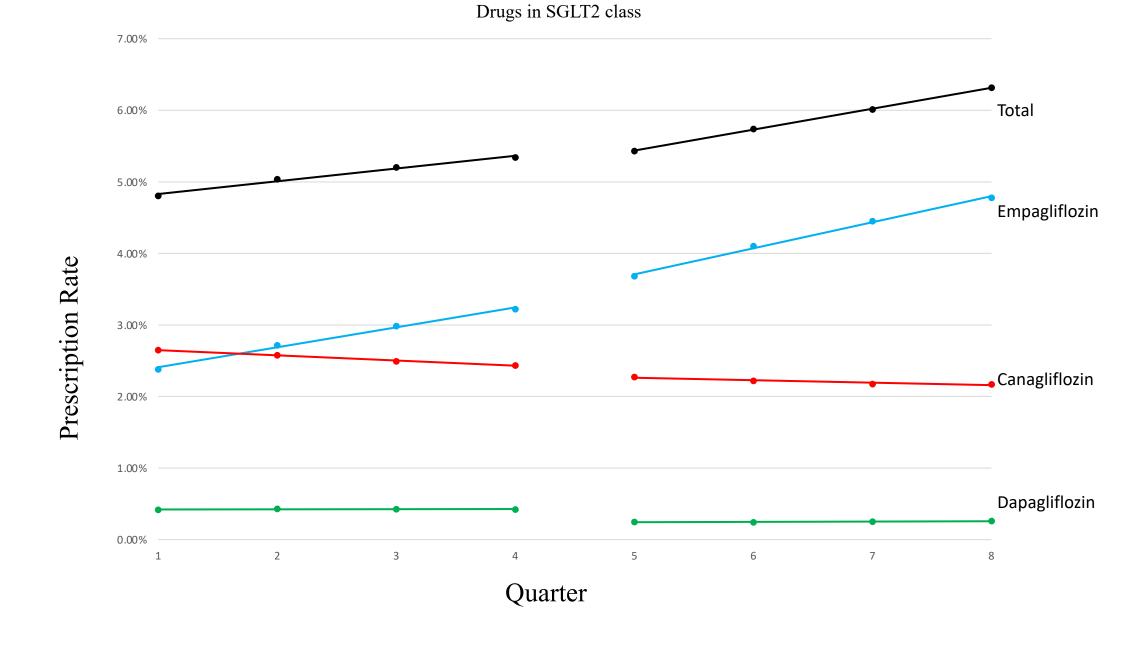
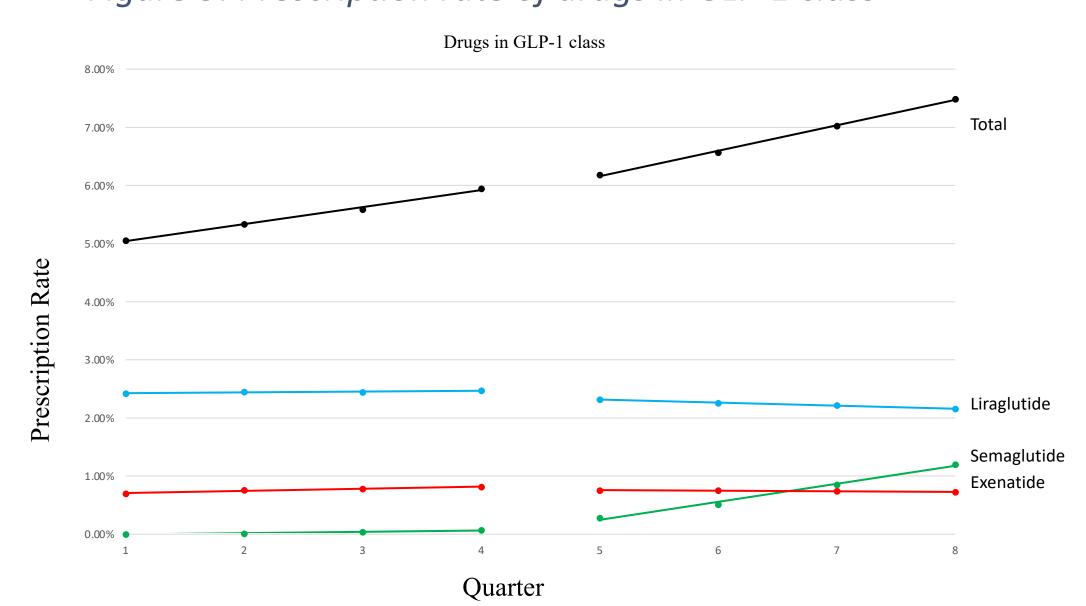



Figure 3: Prescription rate of drugs in GLP-1 class

DISCUSSIONS

- Between 2018 and 2019, the number of T2D drug prescribers identified in this claims data increased from approximately 1.51 million to 1.59 million, a rate of increase slightly above the annual new cases estimated by the CDC
- This uptick may be attributable to the 2019
 diabetes care guidelines, which introduced
 recommendations for newer SGLT2 inhibitors
 and GLP-1 receptor agonists, potentially
 enhancing their adoption
- Among SGLT2 inhibitors:
 - ➤ Empagliflozin was pivotal in driving the overall increase
 - Conversely, canagliflozin's impact was opposite
- In the realm of GLP-1 receptor agonists
 - Liraglutide and exenatide experienced reductions in prescriptions postguideline
 - Semaglutide, however, significantly contributed to the growth
 - Dulaglutide significantly contributed to the overall upward trend
- Metformin maintained its status as the firstline therapy for T2D until the 2022 guideline update. However, its role was nuanced in the 2019 guidelines to consider additional comorbidities
- Limitations:
 - ➤ The true impact of the guideline changes may be obscured by anticipatory behaviors
 - The actual application of these guidelines may extend beyond these intended groups due to factors like patient preferences and proactive provider decisions

REFERENCE LIST

For a full list of references, please contact the author

CONTACT

Presenting Author: Daniel Gu, MS
Email: bochengg@usc.edu
LinkedIn:

