The Cost-effectiveness of Germline BRCA testing in Prostate Cancer followed by Cascade Testing of First-Degree Relatives of Mutation Carriers

Srinivas Teppala¹, Paul Scuffham¹, Kim Edmunds², Matthew J. Roberts³, David Fairbairn⁴, David P. Smith⁵, Lisa Horvath⁶, Haitham Tuffaha²

Introduction

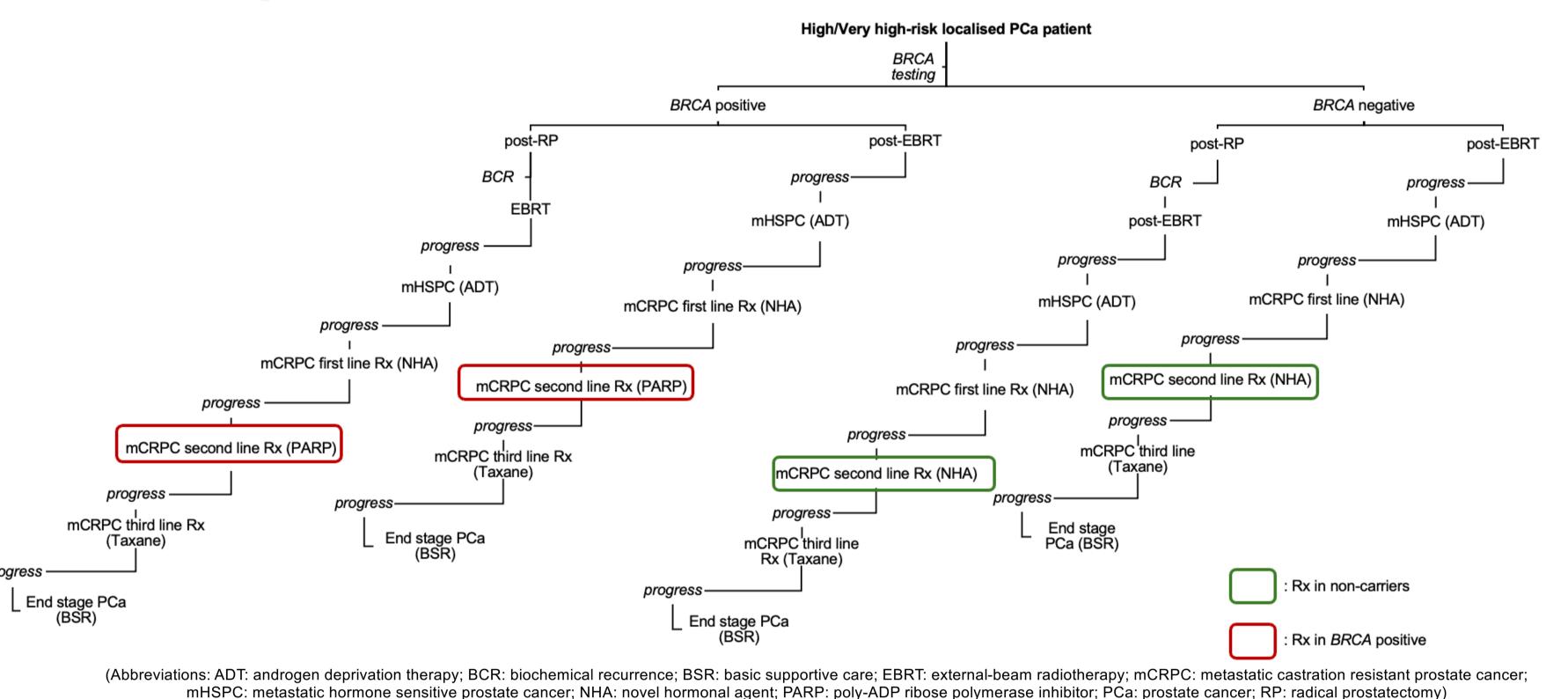
Background

Prostate Cancer (PCa) is the most diagnosed cancer and the 2nd leading cancer-related cause of mortality in Australian men with 3,901 deaths every year. The incidence of PCa is predicted to rise further in the next decade accompanied with a 42% increase in PCa related healthcare costs.

Methods

A modified-Delphi technique of two rounds of surveys was administered to healthcare providers, academics and consumers.

Cost-utility analysis of germline *BRCA* testing was performed in five populations of patients that reached consensus for genetic testing or where there are clinical practice-based recommendations for testing. These groups include PCa patients with 1) mCRPC 2) mPCa 3) localised PCa with high/very high-risk classification; 4) localised PCa with a family history of PCa; 3) localised PCa with Ashkenazi-Jewish ancestry. Analyses were performed from an Australian payer perspective using semi-Markov models over a lifetime time horizon using TreeAge Pro Healthcare; quality-adjusted life years (QALYs) were the health outcomes. Decision uncertainty was characterized using one-way and probabilistic sensitivity analyses.


PCa is also highly heritable and 5-17% of PCa patients have pathogenic germline variants. Approximately one-half of these mutations are in the *BRCA* genes. Genetic testing is recommended in localised PCa patients with high-risk of mutations and all patients with metastatic PCa (mPCa) irrespective of risk.

We reviewed international guidelines for prostate cancer genetic testing and evaluated the economics of germline *BRCA* testing in all patients with mPCa and targeted populations with higherthan-average risk of mutations in localised PCa.

Aims

 To systematically review international guidelines for prostate cancer genetic testing and evaluate the consensus for implementation of genetic testing in Australia using a modified-Delphi technique of two

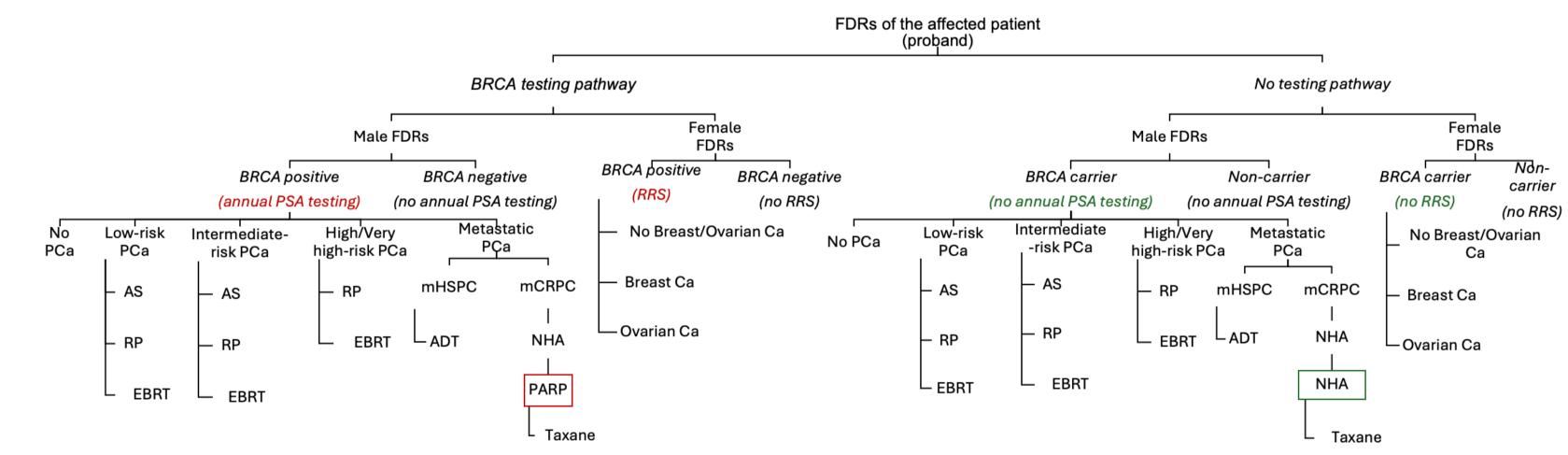
Model Description

rounds of surveys administered to healthcare providers, academics and consumers.

- To assess the cost-effectiveness of germline BRCA testing in PCa patients with:
 - metastatic castration-resistant prostate cancer (mCRPC)
 - mPCa
 - localised PCa patients with:
 - high/very high-risk PCa classification
 - Family history of PCa (i.e., ≥1 firstdegree/second-degree relative with PCa
 - Ashkenazi-Jewish ethnicity

Corresponding Author

Srinivas Teppala MBBS, MPH


Health Economics | School of Medicine & Dentistry

Griffith University | Nathan Campus

QLD | Australia

Email: sri.teppala@griffithuni.edu.au

Figure 1. Decision tree with stage-specific treatments in the BRCA testing of high/very high-risk localised PCa

(Abbreviations: AS: active surveillance; ADT: androgen deprivation therapy; Ca: cancer; EBRT: external-beam radiotherapy; FDRs: first-degree relatives; mCRPC: metastatic castration resistant prostate cancer; mHSPC: metastatic hormone sensitive prostate cancer; mPCa: metastatic prostate cancer; NHA: novel hormonal agent; PARP: poly-ADP ribose polymerase inhibitor; PCa: prostate cancer; mHSPC: metastatic hormone sensitive prostate cancer; mPCa: metastatic prostate cancer; NHA: novel hormonal agent; PARP: poly-ADP ribose polymerase inhibitor; PCa: prostate cancer; mPCa: prostate cancer; mHSPC: metastatic novel hormonal agent; PARP: poly-ADP ribose polymerase inhibitor; PCa: prostate cancer; mPCa: prostate cancer; mHSPC: metastatic novel hormonal agent; prostate cancer; pSA: prostate-specific antigen; RP: radical prostatectomy; RRS: risk reduction surgeries)

Figure 2. Decision tree with stage-specific treatments in the BRCA testing of first-degree relatives of the affected patient in the cascade testing model

Results

Table 1. Results of the cost-effectiveness analysis

	Testing patients alone without cascade testing				Testing patients followed by cascade testing of FDRs						
Intervention	Costs	QALYs	Incremental costs	Incremental QALYs	ICER	Costs	QALYs	Incremental costs	Incremental QALYs	ICER (% cost-effective in PA)	
					(% cost-effective in PA)						
Scenario 1: Te	sting mCRPC pa	atients									
No testing	AU\$103,335	0.90	comparator	comparator	comparator (98%)	-	-	-	-	-	
BRCA testing	AU\$111,177	0.96	AU\$7,841	0.06	AU\$143,613/QALY (2%)	-	-	-	-	-	
Scenario 2: Te	sting mPCa pat	ients									
No testing	AU\$156,312	2.286	comparator	comparator	comparator (100%)	AU\$158,471	9.191	comparator	comparator	comparator (0%)	
BRCA testing	AU\$160,043	2.300	AU\$3,731	0.014	AU\$265,942/QALY (0%)	AU\$162,299	9.425	AU\$3,828	0.234	AU\$16,392/QALY (100%	

Scenario 3: Testing localized PCa patients with high/verv high-risk classification

Author Affiliations

- 1. Health Economics-School of Medicine & Dentistry Griffith University, QLD
- 2. Centre for the Business and Economics of Health, The University of Queensland, QLD
- 3. Department of Urology, Royal Brisbane and Women's Hospital, QLD
- 4. Pathology Queensland, Royal Brisbane and Women's Hospital, QLD
- 5. Daffodil Centre, University of Sydney, NSW
- 6. Medical Oncology, Chris O Brein Lifehouse, NSW

No testing	AU\$62,041	11.042	comparator	comparator	comparator (100%)	AU\$62,874	13.706	comparator	comparator	comparator (0%)
BRCA testing	AU\$63,654	11.045	AU\$1,612	0.003	AU\$591,408/QALY (0%)	AU\$64,524	13.794	AU\$1,650	0.087	AU\$18,872/QALY (100%)
Scenario 4: Tes	ting localized	PCa pati	ients with a far	nily history of P	Ca (≥1 FDR/SDR with PCa)					
No testing	AU\$35,126	19.081	comparator	comparator	comparator (100%)	AU\$35,404	19.970	comparator	comparator	comparator (4%)
BRCA testing	AU\$36,465	19.082	AU\$1,339	0.0003	AU\$3.9 million/QALY (0%)	AU\$36,755	19.998	AU\$1,351	0.029	AU\$47,294/QALY (96%)
Scenario 5: Tes	ting localized	PCa pati	ients with Ashl	kenazi-Jewish a	ncestry					
No testing	AU\$44,935	17.307	comparator	comparator	comparator (100%)	AU\$46,011	20.748	comparator	comparator	comparator (0%)
BRCA testing	AU\$46,523	17.310	AU\$1,588	0.002	AU\$650,098/QALY (0%)	AU\$47,648	20.860	AU\$1,637	0.112	AU\$14,637/QALY (100%

FDRs: first-degree relatives; ICER: incremental cost-effectiveness ratio; PA: probabilistic sensitivity analysis of cost-effectiveness at a willingness-to-pay of AU\$75,000/QALY; PCa: prostate cancer; QALYs: quality-adjusted life years; SDR: second-degree relatives

Conclusion

Germline *BRCA* testing is not cost-effective in patients diagnosed with PCa. The poor yield in this setting is influenced by low prevalence of pathogenic *BRCA* variants, personalised treatment introduced late in PCa disease progression pathway (i.e., during mCRPC) and the high costs of germline testing and personalised treatment (i.e., olaparib). Germline *BRCA* testing, however, provides high value for money after cascade testing cancer-free FDRs of PCa patients with pathogenic variants.