Out-of-Pocket Costs and Initiation of HCV Treatment among **U.S. Medicare Beneficiaries Receiving Low-income Subsidy**

Revathy Suryanarayana¹, Hao Zhang², Shashi Kapadia³, Yuhua Bao³

HPR101

1. University of Texas Southwestern Medical Center, Houston, TX; 2. University of Alabama, Birmingham, Birmingham, AL; 3. Weill Cornell Medicine, New York, NY

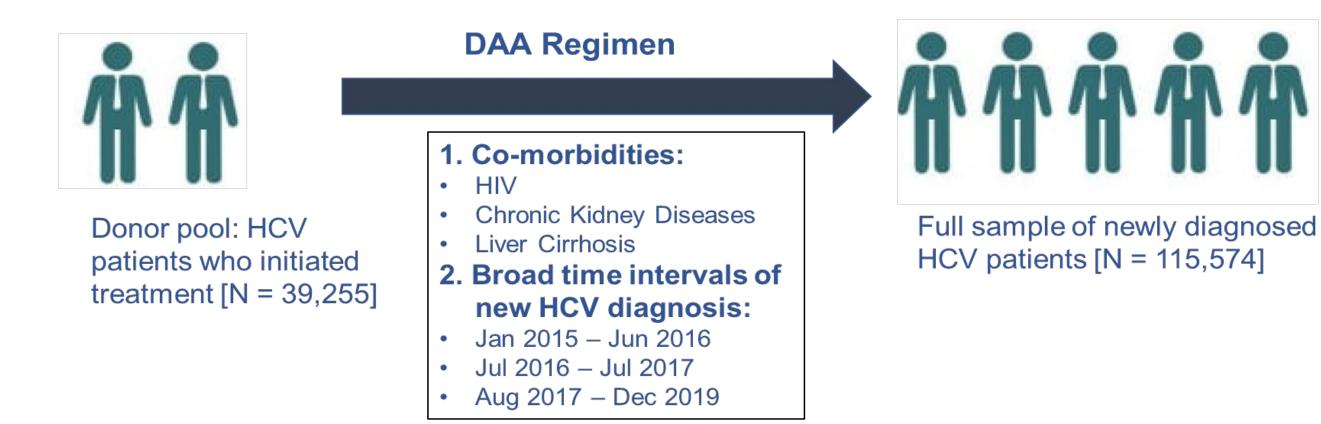
MAIN FINDINGS

A small increase in out-of-pocket costs was associated with modest-to-moderate reduction in the rate of initiating Direct-Acting Antivirals for HCV among lowincome Medicare beneficiaries in the U.S.

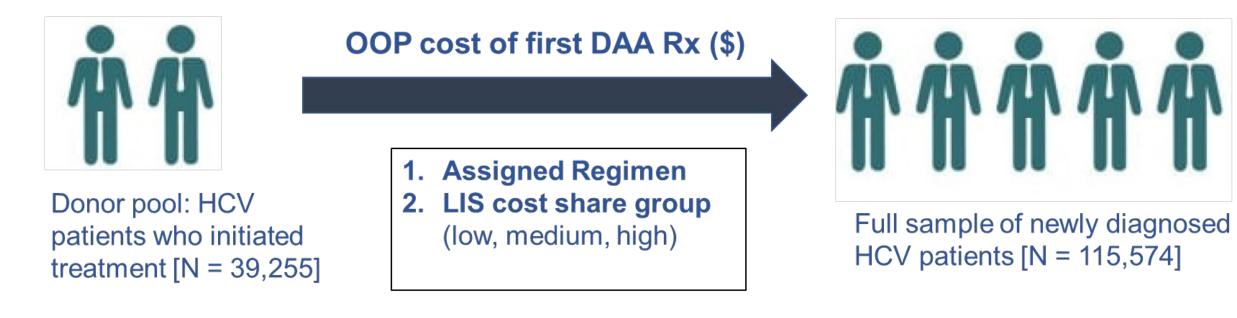
Background

- Low-income Medicare beneficiaries face disproportionate burden of Hepatitis C Virus (HCV)
- Low-income beneficiaries may be especially vulnerable to high out-of-pocket (OOP) cost of Direct-Acting Antivirals (DAAs) for HCV
- Low-income subsidy (LIS) provided in Medicare Part D may not be adequate to mitigate the OOP burden
- OOP costs are not observed for patients who did not initiate DAA, posing methodological challenges of estimating the effects of OOP

Data and Population


- 2014-19 fee-for-service Medicare data
- Medicare beneficiaries aged 18 or older with a new diagnosis of HCV based on RNA test followed by ICD-9/10 dx within 180 days
- Further restrict to beneficiaries in the LIS cost-share groups
 - Low Medium High cost-sharing
 - Excluding beneficiaries in the "very low" group because 99% had 0 OOP

Analytical Strategies


Assign hypothetical OOP cost to all low-income subsidy patients with a new HCV diagnosis, with a two-step approach

Results								
Variable			Full sample (N= 115,574)		Subsample, initiated DAA (N= 39,255)	Subsample, did not initiate DAA (N=76,319)		
Demographics								
Female (vs. male)			43%		41%	44%		
65 or above (vs. younger than 65)			26%		28%	26%		
Non-Hispanic White			60%		59%	60%		
Non-Hispanic Black			25%		29%	24%		
Hispanic			10%		9%	11%		
Asian/Pacific Islander			2%		2%	3%		
American Indian/ Alaska Native			1%		1%	1%		
Unknown/Other Race			1%		1%	1%		
Medicare-Medicaid Dually Eligible			89%		88%	89%		
Co-morbidities								
HIV			7%		6%	7%		
Chronic Kidney Disease (CKD)			15%		13%	16%		
Cirrhosis			14%		17%	12%		
DAA initiation within 6 months			30%		100%	0%		
LIS cost-share group	Ν		ate of DAA nitiation		tual OOP Cost m Donor Pool) Mean [SD]	Hypothetical/Assigned OOP Cost Mean [SD]		
Low	Low 74,667		29%	\$3.04 [1.3]		\$3.07 [1.3]		
Medium	38,968		33%	9	6.32 [2.4]	\$6.45 [2.6]		
High	1,938		36%	\$84	8.78 [504.5]	\$868.76 [449.9]		

Step 1: Assign a DAA regimen

Step 2: Assign hypothetical OOP cost

- Linear regression of 0/1 indicator of DAA initiation as a function of
 - Log(hypothetical OOP)
 - Patient demographics (sex, race/ethnicity, age at diagnosis)

Estimated change in rate of initiation with incremental changes in OOP cost							
	Low cost-share	Medium Cost-share	High Cost-share				
Mean OOP cost (A)	0.2874	0.3293	0.3565				
Mean OOP cost + 1 SD (B)	0.2801	0.3137	0.3287				
Absolute difference (B-A)	-0.0073	-0.0156	-0.0278				
Relative difference (B-A)/A	-2.5%	-4.7%	-7.8%				
P-value of difference	<0.001	<0.001	<0.001				

Conclusions

- OOP cost varied substantially among Medicare patients receiving low-income subsidy for their pharmacy benefits.
- In all three cost-share groups of LIS beneficiaries, an increase in (expected) OOP cost was associated with reductions in the likelihood of DAA initiation.
- Such reductions were modest among low- and medium- cost-share groups and greatest among high-cost-share group.
- Further reduction in OOP costs may be necessary but not sufficient to achieve high treatment rates among low-income Medicare beneficiaries.

- Medicare-Medicaid dually eligibility
- Comorbid conditions (HIV, CKD, Cirrhosis)
- 0/1 indicators of state and year of diagnosis

Acknowledgments and Funding

Dr. Suryanarayana was supported by a pilot grant from the Center for Health Economics of Treatment Interventions for Substance Use Disorder, HCV, and HIV (CHERISH) (P30DA040500). Drs. Zhang and Bao were funded by a grant from the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK123205). Dr. Kapadia was funded by a grant from the National Institute on Drug Abuse (K01 DA048172). The authors report no conflict of interest.