
Objective

Methods

AI-Driven Virtual Assistance Interface for
Excel-Based Economic Model

Shubhram Pandey1, Rajdeep Kaur1, Siguroli Teitsson2, Bill Malcolm2, Pankaj Rai1, Barinder Singh3, Sven Klijn4

1Pharmacoevidence, Mohali, India, 2Bristol Myers Squibb, Uxbridge, UK, 3Pharmacoevidence, London, UK, 4Bristol Myers Squibb, Lawrence Township, NJ, USA

Presented at ISPOR Europe 2024; November 17-20, 2024; Barcelona, Spain Email: <shubhram.pandey@pharmacoevidence.com>
Copies of this poster are for personal use only and may not be reproduced

without written permission of the authors.

[EE494]

System Architecture Overview
The system employs a multi-layered architecture with an advanced framework for generative AI,

using capabilities of the Claude 3 Opus model (Figure 2)

Figure 1. Ensuring Data Security

• The LLM is integrated through the LangChain framework, thus allowing for a dynamic generation

of Python code based on the user input and model requirements

• A major application of this approach is the dynamic, real-time generation of Python code that is

tailored to specific Excel functions and user-specific queries

• Users can input natural language prompts and select model parameters from a dynamically

generated dropdown menu

• The LLM processes these inputs with system prompts and Excel column headers, generating logic

codes without transmitting Excel data, ensuring privacy

• The produced code is run in a controlled interpreter environment, ensuring sensitive information

is not leaked to systems outside the controlled Excel model interaction

• The frontend part of the system, built with Jinja2 templates, is an intuitive and responsive way

to access complex Excel-based economic models. This accessible layer is cohesively linked to a

robust backend by FastAPI, a modern and high-performance web framework especially designed

for developing APIs based on Python

Figure 2. Framework

Figure 3. Configuration Snippet

Download Template: The user has the option to download a formatted template that

includes parameters and their corresponding values. This template can be used as the

foundation for bulk updates

Keys and Values: The template includes the keys (parameter names) and their

corresponding values, which the user has the ability to modify

Perform mapping with new parameters: Users can effectively modify the values of

numerous parameters in the template and subsequently upload it to the interface. This

interface will update the Excel-based economic model with the updated data

Logs for Mapping: The mapping log records both prior and new values and displays a log of

all changes performed, improving transparency and traceability in model modifications

• Flexibility: Enables advanced customization and market-specific adaptations through intelligent

multi-parameter update capabilities

• Security: Develops a strong and efficient strategy for extracting and updating data in Excel-based

economic models using Generative AI while maintaining confidentiality at all stages (Figure 1)

• Efficiency: Significantly reduces the overhead associated with manual data retrieval and updates

in complex CE models.

• Usability: The platform has been designed to support complex tasks, allowing those without

expert knowledge of the Excel models to interact with the models

Introduction

• This study aims to develop a virtual assistant interface specifically designed for bespoke Excel-

based economic models. This interface will leverage the capabilities of a large language model

(LLM), Claude-3, to perform various tasks within the model and customize it for different markets

What this study adds

Figure 4. Multi parameter change process• The boto3_bedrock client was employed in the configuration, which was optimised with precise

delay settings to efficiently manage the complex calculations associated with CE model

manipulations (Figure 3)

Conclusion 
• This study introduces a novel method for integrating generative AI with Excel-based economic models. The integration of the LangChain framework and the Claude 3 Opus model (via AWS Bedrock)

represents a substantial improvement in the application of AI in economic modelling.

• This study demonstrates that generative AI significantly increases efficiency by providing a much faster approach compared to manual adaptation of Excel-based economic models for country-

specific needs. The Assistant UI offers a user-friendly interface, making Excel-based economic models more accessible to non-modellers.

• Future applications may leverage this interface as a unified platform for accessing various Excel-based economic models, ensuring a consistent and streamlined user experience.

• A comprehensive set of 30 prompts were designed to test the actual model updates: 10 for data retrieval and 20 for updates in the model. The AI interface correctly processed this pre-defined set of

prompts: 10/10 for data retrieval and 20/20 for data updates in the Excel model

• The interface includes multi-parameter change functionality for country adaptations using an input sheet and has been tested with 20 distinct input sheets. The multi-parameter change functionality

successfully updated the Excel model with the new values from the uploaded input sheets for all cases (Figure 5)

• This AI assistant's reliability was demonstrated by its consistent performance in all categories of calculations, including data retrieval operations (ranging from simple to multistep operations)

No.
Operation 

Type
Prompt Description

Complexity 

Level
Parameters Involved

1 Update Update the Time Horizon to 5 Medium Time Horizon

2 Retrieval Show Willingness to pay Simple Willingness to pay

3 Update

Update Time Horizon, willingness to 

pay and Discount rate to 3, 5000 

and 0.06 respectively

Complex

Time horizon, 

Willingness to pay and 

Discount rate

4 Update Update willingness to pay by 10% Medium Willingness to pay

5 Update
Update Time Horizon to first 12 

then 15
Complex Time Horizon

6 Retrieval
Display willingness to pay and Time 

Horizon
Medium

Willingness to pay and 

time Horizon

7 Update
Update Discount rate to 2% if time 

Horizon is 40
Complex

Discount rate and 

Time Horizon

8 Retrieval
Show me the value of Discount rate, 

time Horizon and Willingness to pay
Medium

Time horizon, 

Willingness to pay and 

Discount rate

Table1. Test Cases (8 Samples)

Figure 5. User interface

Results

.

Dynamic Code Generation and Execution
The interface streamlined the processes of manipulating and updating economic models by enabling

the creation of dynamic code via inputs provided in natural language

1. The user can enter a structured query, for example: "Update Time Horizon, willingness to pay by

3 and 50000"

2. To generate the Python code, the LLM was provided with the context information, which

includes information regarding the Excel model structure and available operations

3. The LLM generated the Python code as per the user's query and context information

4. The generated code executed in a controlled Python environment, which includes every

essential library (such as xlwings)

5. The code ensures that the model updated to reflect the most recent changes by invoking

app.api.Calculate() after each modification

LLM Integration and configuration
• The interface was powered by Anthropic's Claude 3 Opus model, which was integrated using AWS

Bedrock. Bedrock provides a secure and scalable platform that enhances data processing

activities required for economic modelling

• The model version "anthropic.claude-3-opus-20240229-v1:0" was selected due to its superior code

generation performance, at the time of development of the framework, compared to previous

versions

• A low temperature setting of 0.1 was implemented to ensure consistent and precise outcomes.

These parameter settings were important for providing consistent results and reducing errors in

code development, and are critical for economic modelling

Template-Based Mirroring
• The template-based mirroring interface allows users to change multiple parameters of an Excel-

based economic model simultaneously by uploading the new values in the model using a

template (Figure 4). This procedure facilitates the management of large-scale bulk updates in a

more organized and efficient manner using the following steps:

Prompt framework
The interface used a structured approach to prompt the LLM for generating Python code to work

with an Excel-based economic model. The prompt framework employed the following sections:

Context Section: included a context section marked with XML-like tags, background details,

including the Excel model structure.

User Request and Labels: It included the user's specific query along with relevant column headers or

labels from the Excel model (e.g., 'Labels' in column C and 'Values' in column E).

Constraints and Error Handling: Guidelines for managing errors, try-except blocks, instructions to

handle incorrect or missing labels.

Code Style Rules: Specific rules for code style, rounding of results, and handling different data

types.

Dynamic Input Handling: Included guidelines specify how user input dynamically integrates with

model-specific data into the prompt. The user question is inserted into the {question} placeholder,

relevant Excel labels are inserted into the {labels_list} placeholder, and the {context} is filled with

a comprehensive string, including instructions and examples, and the path to Excel-based economic

models.

Methods
• Excel-based economic models are extensively used for cost-effectiveness analysis that plays a

crucial role in decision-making processes. This research work presents an AI-Driven virtual

assistance interface for Excel-based economic models.

• The AI assistant facilitates performing different operations on Excel-based economic models such

as data retrieval and updates. An essential characteristic of the AI-based virtual assistant is its

capability to facilitate multi-parameter changes using a template mapping approach.

• The assistant has an intuitive interface with a dropdown menu for the selection of model

parameters, enhancing user experience. This feature eliminates the need for manual input of

parameter names when writing the natural language queries and significantly streamlines the

overall user interaction process.


	Slide 1

