Budget Impact Analysis of Hemoglobin A_{1c} and Lipid Panel Point-of-Care Testing with Afinion TM 2 in Italy and Canada

Garcia, David, MSc, MD¹; Ruffolo, Antonio, MSc, MD²; Walczyk Mooradally, Alicyia, PhD¹; Zhou, Anna, MSc¹; Lazaridis, Emmanuel, BA³; Laurelli, Barbara, Dott. Mag.⁴

¹EVERSANA, Burlington, ON, Canada; ²Abbott Rapid Diagnostics, Köln, NW, Germany; ³Abbott Rapid Diagnostics, Ottawa, ON, Canada; ⁴Abbott Rapid Diagnostics, Sesto San Giovanni, MI, Italy

Background and Objectives

- Diabetes and dyslipidemia are two prevalent chronic conditions that require regular blood biomarker testing for diagnosis or to track disease progression.^{1,2}
- In Canada and Italy, the current testing process for patients usually involves going to their primary care physician (PCP) to obtain a blood test requisition, then visiting a central laboratory testing facility to have the test conducted. Dependent on the test results, patients may need to reconsult with their PCP to initiate or modify treatment.³
- This process is associated with high administrative burden for PCPs, resulting in longer wait times, as well as high indirect costs for patients, resulting in low adherence to testing guidelines.⁴
- There is a need to streamline the diagnostic and monitoring pathway for hemoglobin A_{1c} (HbA_{1c}) and lipids to improve identification of diabetic and dyslipidemia patients and ensure those who are diagnosed adhere to testing guidelines to reduce the risk of disease-related complications.⁵
- This study assessed the budget impact of introducing Afinion™ 2 point-of-care testing (POCT) to screen and monitor patients with diabetes or dyslipidemia attending primary care (PC) from the Canadian and Italian societal perspectives.

Methods

- A Budget Impact Analysis (BIA) was developed to estimate both direct costs (HbA_{1c} and lipid panel testing, healthcare provider consultations) and indirect costs (productivity loss, transportation) of Afinion™ 2 POCT vs. traditional lab testing in Canada and Italy with a time horizon encompassing a one-year baseline period (2024) and a five-year forecast period (2025 to 2029).
- The anticipated market share for AfinionTM 2 POCT in the future scenario (i.e., world with AfinionTM 2 POCT) was assumed to increase from 0% in the baseline year to 5% in the first year, and then increase 10% each year from years two to five.
- An epidemiological approach was undertaken to determine the number of patients eligible for HbA_{1c} or lipid panel testing. The eligible population was separated into two categories, a diagnosed diabetic or dyslipidemia population being monitored by PCP, and patients eligible for diabetes or dyslipidemia screening.
- The monitored population was further sub-categorized to inform the number of PCP consultations and tests required annually (Table 1).^{3,6,7}

Table 1: Healthcare Resource Use Inputs in the Monitoring Population

Subgroup		ber of tations	Number of Tests		
Subgroup	Lab Testing	Afinion 2 POCT	Lab Testing	Afinion 2 POCT	
HbA _{1c}					
Patients with optimal	2	2	2	2	
glycemic control	Z	2	Z	Z	
Patients with suboptimal	6	4	4	4	
glycemic control	O	4	4		
Patients not adhering to	2	1	1	1	
testing guidelines	2	,		,	
Lipid Panel					
Stable patients	1	1	1	1	
Patients with uncontrolled	5	2	3	3	
lipid levels	5	3	3	3	
Newly diagnosed patients	4	2	2	2	
initiating treatment	7			2	
Patients not adhering to	1	0.5	0.5	0.5	
testing guidelines		0.5	0.5	0.0	

- It was assumed that patients utilizing lab testing with suboptimal glycemic control or uncontrolled lipid levels will incur additional consultations to initiate or modify treatment.
- For screening, conservative assumptions were made where the request for a test is provided while the patient is consulting for another reason and no follow-up consultation was assumed. Therefore, only testing cost was considered.
- No consultation cost was assumed for the Italian healthcare system as they operate under a per-capita billing system and therefore do not charge the public system per PC consultation.⁸
- To explore how changes in key assumptions affect the BIA results, several scenario analyses were conducted.
- The first scenario analysis considered a healthcare payer perspective which only included direct costs.
- The second and third scenario analysis were included to understand how the BIA would be affected if a proportion of patients are tested and treated at a community pharmacy.
- The fourth scenario analysis was conducted to understand how the BIA would be affected if all patients utilizing traditional lab testing had one follow-up consultation per monitoring test, and that 10% of screening patients had a follow-up consultation.

Results

Incremental Budget Impact

- The five-year cumulative incremental budget impact of introducing Afinion™ 2 POCT is presented in Table 2, showing overall cost savings for both HbA_{1c} and lipid panel POCT over the time horizon.
- The annual incremental budget impact and disaggregated cost categories for AfinionTM 2 POCT is detailed in Table 3 and Table 4 for HbA_{1c} and lipids, respectively.

Table 2: Five-Year Cumulative Incremental Budget Impact of Afinion 2 POC HbA_{1c} and Lipid Panel Testing for the Screening and Monitoring of Patients Attending PC

	HbA _{1c}	Lipid Panel
Canada	-\$758,006,692	-\$726,452,755
Italy	-€ 1,380,658,764	-€ 851,792,115

Table 3: Disaggregated Results by Cost Category for Budget Impact of Afinion™ 2 POC HbA₁. Testing for the Screening and Monitoring of Patients with Diabetes Attending PC

Cost Category	Year 1 (2025)	Year 2 (2026)	Year 3 (2027)	Year 4 (2028)	Year 5 (2029)	5-Year Total
Canada						
Testing	\$3,175,592	\$9,644,471	\$16,265,643	\$23,033,170	\$33,267,882	\$85,386,759
Consultation	-\$5,061,531	-\$15,372,183	-\$25,925,574	-\$36,712,238	-\$53,025,198	-\$136,096,723
Indirect – Consultation	-\$3,373,692	-\$10,246,111	-\$17,280,326	-\$24,470,024	-\$35,343,197	-\$90,713,351
Indirect — Laboratory Testing	-\$22,931,160	-\$69,643,354	-\$117,455,277	-\$166,324,030	-\$240,229,556	-\$616,583,377
Total	-\$28,190,791	-\$85,617,177	-\$144,395,534	-\$204,473,121	-\$295,330,069	-\$758,006,692
Italy						
Testing	-€ 247,289	-€ 740,604	-€ 1,231,813	-€1,720,412	-€ 2,451,837	-€ 6,391,954
Consultation	€0	€0	€0	€0	€0	€0
Indirect – Consultation	-€10,663,563	-€ 31,936,219	-€ 53,118,090	-€74,187,388	-€105,727,785	-€ 275,633,044
Indirect – Laboratory Testing	-€ 42,503,433	-€ 127,293,185	-€ 211,721,083	-€ 295,700,282	-€ 421,415,781	-€1,098,633,765
Total	-€ 53,414,285	- € 159,970,008	- € 266,070,986	-€ 371,608,081	-€ 529,595,403	-€ 1,380,658,764

Table 4: Disaggregated Results by Cost Category for Budget Impact of Afinion™ 2 POC Lipid Testing for the Screening and Monitoring of Patients with Dyslipidemia Attending PC

Cost Category	Year 1 (2025)	Year 2 (2026)	Year 3 (2027)	Year 4 (2028)	Year 5 (2029)	5-Year Total
Canada						
Testing	\$4,976,823	\$15,114,920	\$25,491,694	\$36,097,835	\$52,137,788	\$133,819,060
Consultation	-\$4,877,003	-\$14,811,759	-\$24,980,407	-\$35,373,821	-\$51,092,060	-\$131,135,049
Indirect – Consultation	-\$3,012,957	-\$9,150,538	-\$15,432,614	-\$21,853,548	-\$31,564,099	-\$81,013,758
Indirect — Laboratory Testing	-\$24,104,141	-\$73,205,769	-\$123,463,379	-\$174,831,879	-\$252,517,841	-\$648,123,009
Total	-\$27,017,278	-\$82,053,147	-\$138,384,706	-\$195,961,413	-\$283,036,212	-\$726,452,755
Italy						
Testing	€ 2,165,066	€ 6,484,138	€10,784,778	€15,062,562	€ 21,466,335	€ 55,962,879
Consultation	€0	€0	€0	€0	€0	€0
Indirect – Consultation	-€ 3,711,920	-€ 11,116,801	-€18,490,079	-€ 25,824,172	-€ 36,803,189	-€ 95,946,161
Indirect —Laboratory Testing	-€ 31,406,883	-€ 94,060,219	-€ 156,446,171	-€ 218,500,567	-€ 311,394,993	-€ 811,808,833
Total	-€ 32,953,738	-€ 98,692,881	-€ 164,151,472	-€ 229,262,177	-€ 326,731,848	-€ 851,792,115

Number of Consultations

• To determine the potential healthcare efficiencies, the reduction in PCP consultations achievable through the implementation of Afinion™ 2 POCT was analyzed. The model demonstrated that both HbA_{1c} (Figure 1) and lipid panel testing (Figure 2) led to a significant decrease in PCP consultations.

Scenario Analysis

• A summary of scenario analysis results is presented in Table 5.

 Table 5: Summary of Scenario Analyses

Cannasia	Canada	Italy 5-Year Incremental Budget Impact	
Scenario	5-Year Incremental Budget Impact		
HbA _{1c} Base Case	-\$758,006,692	- € 1,380,658,764	
Scenario #1: Healthcare Payer Perspective	-\$50,709,964	-€ 6,391,954	
Scenario #2: Pharmacy Administration of Afinion™ 2 POCT HbA _{1c} (25%)	-\$830,063,927	-€ 1,424,151,456	
Scenario #3: Pharmacy Administration of Afinion™ 2 POCT HbA _{1c} (100%)	-\$1,046,235,633	-€1,554,629,533	
Scenario #4: Increased Number of Consultations for Patients Using Central Lab	-\$1,164,108,278	-€ 1,770,709,221	
Lipid Panel Base Case	-\$726,452,755	-€ 851,792,115	
Scenario #1: Healthcare Payer Perspective	+\$2,684,011	+€ 55,962,879	
Scenario #2: Pharmacy Administration of Afinion™ 2 POCT HbA _{1c} (25%)	-\$791,000,584	-€ 873,991,183	
Scenario #3: Pharmacy Administration of Afinion™ 2 POCT HbA _{1c} (100%)	-\$984,644,070	-€ 940,588,386	
Scenario #4: Increased Number of Consultations for Patients Using Central Lab	-\$1,238,636,250	-€1,140,383,969	

Discussio

Implementation of AfinionTM 2 POCT can address many of the unmet testing needs amongst patients with diabetes or dyslipidemia, as this technology can facilitate on-site testing, providing rapid test results and allowing medical decision-making to be expedited in one PC visit. AfinionTM 2 POCT can transform the healthcare system by decentralizing access at the PC and pharmacy level, empowering patients and fundamentally shifting the healthcare paradigm towards more accessible and patient-centered care options. This study demonstrates that the adoption of AfinionTM 2 POCT can provide efficiencies to different types of healthcare systems through reducing PC consultations, saving time and money for patients, and providing cost savings for payers.

Abbreviations
BIA = budget impact analysis; HbA_{1c} = hemoglobin A_{1c}; PC = primary care; PCP = primary care physician; POCT = point-of-care testing.

1. WHO (2016). Global Report on Diabetes.

Management of Dyslipidemia for the Prevention of Cardiovascular Disease in Adults. Can J Cardiol 37 (8): 1129-1150.

Arvanitis M, Lowenstein CJ (2023). Dyslipidemia. Annals of Internal Medicine 176 (6): ITC81-ITC96.
 Chadee A, Blackhouse G, Goeree R (2014) Point-of-Care Hemoglobin A1c Testing: A Budget Impact Analysis. Health Technology Assessment.
 Schnell O, Crocker JB, Weng J (2017) Impact of HbA1c Testing at Point of Care on Diabetes Management. J Diabetes Sci Technol 11 (3): 611-617.
 Trenti T (2021) Synergy Between Point-of-Care Testing and Laboratory Consolidations. EJIFCC 32 (3): 328-336.
 Berard LD, Siemens R, Woo V (2018) Monitoring Glycemic Control. Can J Diabetes 42 Suppl 1 S47-S53.
 Pearson GJ, Thanassoulis G, Anderson TJ, Barry AR, Couture P et al. (2021) 2021 Canadian Cardiovascular Society Guidelines for the

8. Giulio de Belvis A, Meregaglia M, Morsella A, Adduci A, Perilli A et al. (2022) Italy: Health System Review. Health Syst Transit 24 (4): 1-236.

