

Drug Repurposing: Policy Barriers to Using Existing Pharmaceuticals in New Indications: Results of a Systematic Literature Review

HPR155

Petykó Zs^{1,2,3}, Hosszú D¹, Csanádi M⁴, Obeng GD⁴, Ameyaw D⁴, Gyöngyösi K^{1,2,3}, van der Meer HG⁵, Pantziarka P⁶, Kaló Z^{1,2,3}, Inotai A^{1,2,3}

- ¹ Syreon Research Institute, Budapest, Hungary
- ² Center for Health Technology Assessment, Semmelweis University, Budapest, Hungary
- ³ Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- EMAIL OF CORRESPONDING AUTHOR: zsuzsanna.petyko@syreon.eu

- ⁴ Syreon Research Africa, Accra, Ghana
- ⁵ ZonMw, The Hague, Netherlands
- ⁶ Anticancer Fund, Meise, Belgium

INTRODUCTION

- The current pharmaceutical innovation model is increasingly unable to meet the healthcare demands of an increasing, and ageing, global population.¹
- Drug repurposing (DR) finding new therapeutic uses for existing medications - offers a promising strategy by potentially reducing development time and costs.²
- Currently, significant hurdles restrict the broader application of DR³; however, these have not yet been examined comprehensively.

OBJECTIVES

This study was conducted within the European Union funded REMEDi4ALL Consortium to systematically identify and analyze the key policy obstacles hindering the success of DR.

METHODS

- A systematic literature review (SLR) was conducted in 2023 searching PubMed and Embase databases for articles published after January 1st, 2013, complemented with grey literature search and reference searching.
- As an extension to the SLR, expert interviews were carried out with all partner organizations within the REMEDI4ALL consortium.
- The results of the SLR and interviews underwent thematic analysis to create a barrier list. Barriers were categorized into main themes and subthemes.
- Validation workshops were held with consortium members and external experts from all major stakeholder groups to validate and further adjust the final list of barriers.
- The development process is described in detail in Figure 1.

ESULIS

- 875 barrier extracts were processed in the thematic analysis.
- A total of 80 experts participated in the validation workshops.
- After the validation workshops the final barrier list contains 33 barriers in 9 main themes and 20 sub-themes, as shown in Table 1.

3 barriers, on general perception and R&D cost perception
2 barriers, on data exclusivity and incentives for originators
2 barriers, on free ridership and return-on-investment
5 barriers, on interest, availability of funding and funding models

5 barriers, on infrastructure, resources and know-how

Market Authorization

6 barriers, on evidence generation, pathway and off-label use

Exclusivity rights

5 barriers, on regulatory and patent protection

Health technology assessment

2 barriers, on evidence requirement and process

Pricing

3 barriers, on price potential and differential pricing

Table 1. Final Barrier List

Barrier tree development

Figure 1. Process of the barrier list development

CONCLUSION

- Our comprehensive list of policy barriers provides a robust starting point to prioritize policy issues according to their perceived impact and
 actionability by different stakeholder groups.
- > Future research should focus on developing actionable policy recommendations to enhance the DR ecosystem and facilitate broader access to repurposed medicines.

REFERENCES

- 1. Naja, S., Makhlouf, M. M. E. D., & Chehab, M. A. H. (2017). An ageing world of the 21st century: a literature review. Int J Community Med Public Health, 4(12), 4363-9.
- 2. Ashburn, T. T., & Thor, K. B. (2004). Drug repositioning: identifying and developing new uses for existing drugs. *Nature reviews Drug discovery*, 3(8), 673-683.
- 3. Krishnamurthy, N., Grimshaw, A. A., Axson, S. A., Choe, S. H., & Miller, J. E. (2022). Drug repurposing: a systematic review on root causes, barriers and facilitators. BMC health services research, 22(1), 970.

