

Leveraging Machine Learning for Predicting Health Technology Assessment Outcomes

Ryan Lin, MSc^{1*;} Herman Eaves, MSc¹; Mackenzie Mills, PhD^{1,2}; Panos Kanavos, PhD²

¹ Hive Health Optimum Ltd. (HTA-Hive), London, United Kingdom

² The London School of Economics and Political Science (LSE), London, United Kingdom

Background

 Heterogeneity in Health Technology Assessment (HTA) outcomes across different settings contributes to disparities in patient access to innovative medicines.

 Evaluate Predictive Modelling Approaches: Assess the effectiveness of different machine learning models in predicting HTA

Methods

1. Data Collection:

- Data on drug characteristics, clinical evidence, economic evidence, disease characteristics, and firm characteristics were extracted for 560 HTA decisions from 2009 to 2024 using HTA-Hive's database.
- The analysis focused on five established HTA agencies conducting costeffectiveness analyses: NICE (England), CADTH (Canada), SMC (Scotland), **INESSS** (Quebec, Canada), **TLV** (Sweden).

- Variations in HTA decisions can arise from differences in assessment methodologies, evidence interpretation, and contextual factors among agencies.
- Despite the critical impact of these decisions, there is limited research on the predictive ability of pre-submission data to forecast HTA outcomes across various agencies and settings.

outcomes using pre-submission data.

 Identify Influential Features: Determine which variables have the greatest impact on HTA decisions across different agencies.

 Enhance Understanding of HTA **Decision-Making**: Provide insights into the factors influencing HTA outcomes to inform future submissions and policy-making.

Results

The **XGBoost** model achieved the highest performance, with an accuracy of **91%**, F1-Score of **0.91**, and ROC-AUC of **0.95**. The **Random Forest** model closely followed with an accuracy of **90%**, F1-Score of **0.90**, and ROC-AUC of **0.96**. Logistic Regression and Decision Tree models showed lower performance.

Model	Accuracy	F1-Score	ROC-AUC
Logistic Regression	86%	0.87	0.92
Decision Tree	87%	0.87	0.88
Random Forest	90%	0.90	0.96
XGBoost	91%	0.91	0.95

2. Data Preprocessing:

- Variable Selection: Excluded 'Manufacturer' and 'Diseases' variables due to high dimensionality and to prevent overfitting. Focused on variables with significant impact and manageable levels of multicollinearity.
- **Target Variable:** Binarised 'HTA Outcome' into 'Approved' (including 'Listed with Criteria, LWC' and 'Listed, L') and 'Not Approved' ('Do Not List, DNL') for simplified modelling.

3. Feature Engineering:

- **Encoding Categorical Variables**: Applied one-hot encoding to transform categorical variables into numerical format suitable for modelling.
- ICER Submitted Band: Categorised ICERs into bands (£0–15k, £15–30k, £30– 45k, £45–60k, £60–75k, £75k+), including 'dominant', 'not reported', and 'confidential'. All ICER values converted to **GBP** for consistency.
- Feature Removal: Removed features with VIF > 5 to reduce redundancy and improve model stability.

4. Addressing Class Imbalance:

• Utilised Synthetic Minority Over-sampling Technique (SMOTE) to balance the dataset and enhance model training.

5. Model Development:

• Models Evaluated: Logistic Regression, Decision Tree, Random Forest, **XGBoost**.

Superior Performance of Ensemble Models:

- Handling Complex Interactions: XGBoost and Random Forest outperformed simpler models due to their ability to capture non-linear relationships and handle complex interactions while reducing overfitting.
- Robustness to Multicollinearity: These models are less sensitive to multicollinearity, which complements the steps taken to address it.
- Feature Importance: Provides insights into which variables are most influential after addressing multicollinearity.

Key Features Influencing HTA Outcomes:

- Type of Economic Analysis:
 - 'Cost minimisation' (VIF 3.47) analyses significantly increased the likelihood of approval. Indicating that submissions focusing on cost-saving measures are favored.
- Trial Blinding Type:
 - 'Open label or unblinded' (VIF 3.43) trials were influential in predicting outcomes. Suggests that transparency in trial design may influence HTA decisions.
- **ICER Submitted Band:** \bullet
 - 'Not Reported' ICERs had a high VIF (6.35) and were associated with less favorable outcomes.
 - Higher ICER bands '£75k+' (VIF 2.45) negatively influenced approval likelihood, emphasising the importance of cost-effectiveness in HTA evaluations.
- **Agency-Specific Effects** •
 - The specific HTA agency (e.g., NICE, SMC) had VIFs around 2, indicating that the specific HTA agency plays a role in the outcome.
- **Therapeutic Areas:** Certain areas like 'Oncology' (VIF 6.56) and 'Pulmonology' (VIF 1.43) ۲ were significant predictors, possibly due to high unmet medical needs or the availability of innovative treatments in these areas.

Training and Testing: Split data into training and testing sets (80/20 split). Performed **cross-validation** and **hyperparameter tuning** to optimise model performance and prevent overfitting.

Conclusion & Key Takeaways

- The study demonstrates that pre-submission data can effectively predict HTA outcomes using when multicollinearity is addressed, with **XGBoost** being the most effective model. Ensemble Methods outperform simpler models by capturing complex patterns.
- Key factors influencing HTA decisions include the type of economic analysis, trial design, cost-effectiveness data, and the specific HTA agency.
- Insights from this type of analysis can guide **submission strategies** for manufacturers, while **policy-makers** can use these findings to reflect on assessment processes and address disparities.

Note: This poster presents a preliminary and exploratory study into predictive modeling for HTA outcomes. The findings offer valuable insights but should be interpreted within the context of the study's limitations.

- Expanded datasets may enhance predictive power of models: Larger datasets will enable exploration of variable sets with greater dimensionality including firm characteristics and disease.
- Quantifying and comparing clinical benefit across disease remains a challenge: There is a need for standardised metrics to compare the clinical efficacy across settings.
- **Policy variations:** Differences in how agencies interpret evidence and apply additional criteria suggest that models could be further refined to account for these nuances.
- **Broader Application:** While preliminary results provide insights on England, Scotland, Sweden, and Canada, further research exploring determinants of HTA outcome in other settings would be of interest.
- **Enhancing Model Transparency**: Address the 'black box' nature of machine learning models to increase trust among decision-makers. Using interpretable models or explainability techniques like **SHAP values** to elucidate feature impacts.