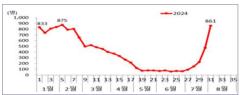


Assessing the Impact of COVID-19 on National Productivity in Korea: A Fall 2023 Analysis

Sewon Joung¹, Youngju Kang², Ekkehard Beck³, Keya Joshi³, Hankil Lee^{1,4*} $^{
m 1}$ Department of Biohealth Regulatory Science, Graduate School of Ajou University, South Korea

² Moderna Korea, Seoul, South Korea ³ Moderna, Inc., Cambridge, MA, USA

⁴College of Pharmacy, Ajou University, South Korea (Presenting author: joungsw3125@ajou.ac.kr, *Corresponding author: hankil@ajou.ac.kr)


KEYWORDS

COVID-19, Socioeconomic impact, Cost estimation, Productivity loss, Medical cost, Vaccination

BACKGROUND

Trend of COVID-19 Outbreak

- As of August 31, 2023, the cumulative COVID-19 cases in South Korea is 34.57 million, meaning that 66.8% has been infected at least once.
- The trend of hospitalized COVID-19 patients has surged since July

Post-COVID

- Post-COVID syndrome refers to unexplained symptoms lasting over three months after a COVID-19 diagnosis.
- The prevalence of post-COVID syndrome in Asia is 49.79%, as reported in a meta-analysis by (Razak et al., 2024)

Impact of COVID-19

- Korea's National Health Insurance spent about 7 trillion KRW on COVID-19 from 2020 to September 2022, with nearly 50%, or 3.4 trillion KRW, spent during the three-month Omicron surge from March to June 2022. (Choi et al. ,2022)
- Considering impact of COVID-19 in South Korea, including medical costs and productivity losses, can inform future response strategies.

OBJECTIVES

This study aims to predict the impact of COVID-19 on national productivity in South Korea from fall 2023 to fall 2024 within the Korean context.

METHODS

Model Structure: Estimating Total Impact of COVID-19

Medical cost

Direct medical costs from clinical outcomes due to COVID-19 infection.

Target population:

The entire population of South Korea

Productivity loss

Absenteeism and replacement cost due to COVID-19 infection

Target population:

Working population of South Korea

Prior Vaccination Status

in The Model

65.70%

Unvaccinated

24.67%

From the government's perspective, the costs include productivity losses due to absenteeism and medical costs covered by National Health Insurance (NHI). *From the individual's perspective,* the costs include wage loss due to unpaid sick leave (productivity loss) and medical costs not covered by NHI.

Key Assumptions of Model

100%

80%

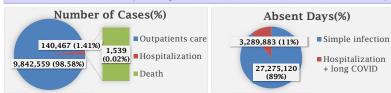
60%

40%

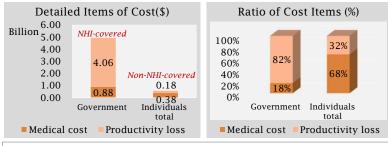
86.80%

- Cost Estimation Period: November 2023 to October 2024 (12 months)
- No one receives the XBB booster (23'-24'), which is administered under NIP starting in October 2023.
- The population benefits

- from residual protection due 20% Vaccinated to prior vaccinations. 0% <Vaccination Rollout Schedule*> Bivalent Primary Monovalent → February 2021: Primary series series booster booster → October 2021: Monovalent booster **■**18~64 **■**<18, 65+ → October 2022: Bivalent booster * The vaccination schedule is referenced by the National Immunization Program (NIP).


Key Variables for Estimating the Impact of COVID-19

Category	Variable name	Value, Reference (Group: 18~64 / <18 & 65+)
1. Population	National population	35,207,507/16,505,112
	Employed population	25,166,010
	Dependents per population	0.47(Total), 0.51(Employed)
2. Prior vaccination status	Vaccinated population(%)	(only prim*) 21.10%, (booster) 65.70%
	Unvaccinated population(%)	13.20%
3. Prior vaccination efficacy (Residual protection)	Infection-VE** (%)	(mono***)56%, (Biv****)56%
	Hospitalization-VE** (%)	(prim*)58%, (mono***)83%, (Biv****)83%
	Infection -monthly VE** waning (%)	4.75%
	Hospitalization -monthly VE** waning (%)	1.37%
4. Probability of case	Hospitalization (%)	0.83% / 6.15%
	Death after Hosp.(%)	0.48% / 1.28%
	Severe Long COVID (%)	2.10%
5. Infection rate	Unvaccinated COVID-19 incidence(%)	21.50%
6. Productivity loss	Maximum paid sick days	15 (Korean Labor Standards Act)
	Wage per day & Year (₩→\$)	from KOSIS Labor data
	Replacement cost (₩→\$)	wage per day * friction days
7. Absent days & cost	Simple infection (days, ₩→\$)	from HIRA big data open portal
	Hospitalization (days, ₩→\$)	(KCD code:
	Long COVID (days)	U071-COVID19, U099-Long-COVID)
8. Medical cost	Insurance co-payment(%)	30%


*Primary series, **VE: Vaccination efficacy, ***Monovalent booster, ****Bivalent booster

RESULTS

Clinical Outcomes: Impacting Medical Costs & National Productivity

Total Impact of COVID-19: Government & Individual Perspective

- From the government's perspective, the total cost was USD 4.94 billion
- From the individual's perspective, the total cost was USD 0.55 billion

DISCUSSION

- Korea's NHIS spent KRW 7 trillion on COVID-19-related medical costs over three years (Jan 2020-June 2022) (Choi et al., 2022), with this study estimating KRW 1 trillion for Nov 2023-Oct 2024.
- While U.S. workers faced an annual income loss of USD 9,000 per person from COVID-19 (March 2020-June 2022) (Goda et al., 2023), this study estimates Korea's loss at <u>USD 406.84 per case (Nov 2023-Oct 2024)</u>
- The predicted impact of COVID-19 has decreased since the early stages of the pandemic.
- The impact of COVID-19 may change dynamically over time, and it continues to incur significant costs even in 2023 and 2024.

- Some variables were unavailable locally, so we used international values.
- Outdated values may have led to an overestimation of COVID-19 costs.
- In Korea, XBB vaccines have been administered from Oct 2023, but the model did not account for any XBB vaccinations.

CONCLUSION

- This study finds that COVID-19 resulted in an economic loss of USD 5.49 billion from a combined government and individual perspective.
- <u>Productivity losses constitute the largest share of total costs</u> in the overall national estimate due to COVID-19.
- This study examined the *cost items and scale* associated with infectious diseases, offering valuable insights for future response strategies.

ACKNOWLEDGEMENTS & CONFLICT OF INTEREST

Youngju Kang, Ekkehard Beck, Keya Joshi are employees of Moderna, Inc and may own stock/stock options in the company. This study was funded by Moderna, Inc but contains objective and scientific facts.