Cost-effectiveness Analysis of Different Recombinant Factor VIII for Prophylactic Treatment of Previously Untreated Patients with Severe Hemophilia A in China

Acceptance Code:EE405

Li Yang¹, Jie Peng², Congling Gu³, Zhenguo Wang³, Genyong Zuo^{4*}

1.Jinan Preschool Education College, Jinan, China; 2. Xiangya Hospital Central South University, Changsha, China; 3.Takeda (China) International Trade Co., Ltd., Beijing, China; 4.Shandong University, Jinan, China *Email: smartyong@sdu.edu.cn

INTRODUCTION

- Hemophilia A is a hereditary bleeding disorder caused by mutations in the gene for coagulation factor VIII (Factor VIII, FVIII). Approximately 49.7% of hemophilia patients have severe disease.¹
- In China, multiple recombinant FVIII products, including antihemophilic factor (recombinant) plasma/albumin-free method (rAHF-PFM) and BAY 81-8973, have been approved for hemophilia A replacement therapy.
- Pro-inflammatory responses during the initial FVIII replacement therapy can cause the development of neutralizing antibodies (inhibitors) that substantially discount the effects of FVIII replacement therapy in patients with hemophilia A.²

OBJECTIVES

• To assess the cost-effectiveness of two recombinant factor VIII (rFVIII) products for

METHODS: MAIN MODEL INPUTS (CONTINUED)

*The costs of HTI eradication treatment were the weighted drug acquisition costs of rFVIII and plasma-derived FVIII according to the surveyed distribution from clinical experts (rFVIII accounting: 78.8%; plasma-derived FVIII: 21.2%)

RESULTS: BASE CASE ANALYSIS

Prophylactic treatment scenario rAHF-PFM BAY 81-8973

Difference

prophylactic treatment of previously untreated patients (PUPs) with severe hemophilia A from the perspective of Chinese healthcare system.

METHODS: MODEL DESIGN

Model features		
Model cohort	PUPs with hemophilia A in China	
Primary health states	 Inhibitor-negative Post low-titer inhibitor (LTI) treatment without successful inhibitor eradication Post-High-titer inhibitor (HTI) treatment without successful inhibitor eradication Bleeding-related complications (intracranial hemorrhage, hemophilic arthropathy, gastrointestinal bleeding) Death 	
FVIII prophylaxis treatment scenarios	rAHF-PFM vs. BAY 81-8973	
Model outputs	 Total risk of developing FVIII inhibitor Lifetime total bleeding episodes Lifetime total risk of bleeding related complications Life years Quality-Adjusted Life Years (QALYs) Lifetime direct medical costs Incremental cost-effectiveness ratio (ICER) 	
Perspective	Healthcare system in China	
Time Horizon	Lifetime	
Model cycle length	1-year	
Annual discount rate	5% for both health benefits and costs	
	METHODS: MODEL STRUCTURE	

Lifetime total clinical outcomes			
Bleeding episodes	198.2	353.4	-155.2
Risk of developing FVIII inhibitors	0.302	0.545	-0.244
Risk of intracranial hemorrhage	0.042	0.043	-0.001
Risk of hemophilic arthropathy	0.916	0.920	-0.003
Risk of gastrointestinal bleeding	0.010	0.011	-0.001
Cost-effectiveness analysis results (discounted)			
Total life year	17.965	17.910	0.055
Total QALY	9.290	8.511	0.779
Lifetime direct medical costs	¥12,060,222	¥16,638,625	-¥4,578,403
ICER for rAHF-PFM vs. BAY 81-8973	-¥	5,875,939 (Superiori	ty)

Likely through substantially reducing bleeding episode, prophylactic treatment with rAHF-PFM had costeffectiveness superiority over BAY 81-8973 for PUPs with severe hemophilia A in China

RESULTS: ONE-WAY SENSITIVITY ANALYSIS

METHODS: MAIN MODEL INPUTS

Data used in this model were from systematic literature review (SLR), clinical expert survey and public sources⁴⁴⁻⁴⁷.

without successful

 Based on SLR results, the initial age of the model cohort was set 8.6 years, with a male proportion of 100%.

I. KEY MODEL INPUTS FOR INHIBITOR-NEGATIVE PATIENTS

Model-inputs	rAHF-PFM prophylaxis (Baseline, 95% CI)	BAY 81-8973 prophylaxis (Baseline, 95% CI)
Incidence of inhibitors, % ³⁻⁵	30.3% (13.9% <i>,</i> 46.6%)	54.8% (39.7%, 69.0%)
Distribution of inhibitors, % ^{3,6-13}		
LTI	44.7%	26.1%
HTI	55.3%	73.9%
Annual bleeding risk, % ^{3,14-20,23}	69.2% (59.4% <i>,</i> 79.0%)	73.0% (63.6%, 82.4%)
Annualized bleeding rates 3,13,19-23	3.6 (2.4, 4.7)	5.3 (3.8, 6.8)

The cost-effectiveness of rAHF-PFM relative to BAY 81-8973 was mainly driven by annual discounting rate for cost, ABR of rAHF-PFM and BAY 81-8973, and quality of life utility for patients without the occurrence of any bleeding episodes.

RESULTS: PROBABILISTIC SENSITIVITY ANALYSIS (PSA)

Based on the PSA from 5,000 Monte-Carlo simulations, the chance for rAHF-PFM to be superior to BAY 81-8973 for PUPs with severe hemophilia A from the cost-effectiveness perspective in China was **97.5%**.

CONCLUSIONS

*95% CI: 95% Confidence Interval

II. KEY MODEL INPUTS FOR LTI AND HTI PATIENTS

Model-inputs	LTI (Baseline, 95% CI)	HTI (Baseline, 95% CI)
Success rate of inhibitor eradication, % ²⁴⁻³⁵	94.6% (80.8%, 98.6%)	78.5% (70.6%, 84.8%)
Annual bleeding risk, %		
Inhibitor eradication treatment ^{3,14-20,23,36}	69.2%/73.0%*	71.2% (54.6%, 83.6%)
Post treatment without successful inhibitor eradication		
On-demand treatment ^{37,42}	100.0%	100.0%
Emicizumab prophylaxis ³⁷⁻⁴¹	10.7% (4.1%, 17.4%)	46.9% (40.0%, 53.8%)
Annualized bleeding rates		
Inhibitor eradication treatment ^{3,13,19-23,34}	3.6/5.3*	4.8 (2.7, 6.9)
Post treatment without successful inhibitor eradication		
On-demand treatment ^{37,43}	13.1	37.8
Emicizumab prophylaxis ³⁷⁻³⁹	3.1	3.1

*Assuming that LTI eradication treatment had the same bleeding-related outcomes as prophylaxis treatment in inhibitor-negative patients

- Based on the best available evidence, prophylactic treatment with rAHF-PFM for PUPs
 with severe hemophilia A is highly likely to demonstrate superiority over BAY 81-8973
 from the cost-effectiveness perspective of the healthcare system in China.
- The cost-effectiveness superiority of rAHF-PFM over BAY 81-8973 for PUPs with hemophilia A in Chinese patients is highly stable under the overall uncertainty in the cost-effectiveness analysis.

REFERENCES					
I. Haemophilia. 2021;27(1):e51-e59; al. Front Immunol. 2020;11:476. Published 2020 Mar 24; al. Thromb Haemost. 2023;123(1):27-39; G, et al. Haemophilia. 2014;20:41; t al. Blood Coagul Fibrinolysis. 2021;32(7):443-450; et al. J Thromb Haemost. 2018;16(1):39-43; I. Haemophilia. 2014;20:18; al. Blood. 2014;124(23):3398-3408; G, et al. Thromb Haemost. 2012;107(6):1072-1082; G, et al. Thromb Haemost. 2012;107(6):1072-1082; et al. Res Pract Thromb Haemost. 2021;5(SUPPL 2); c, et al. Blood. Nov 2014;124(23):3389-3397; NL, et al. Blood. 2018;132; et al. Curr Med Res Opin. 2022;38(7):1133-1139;	 Tsakiris DA, et al. <i>Blood</i>. 2020;136:1; Mahlangu JN, et al. <i>J Thromb Haemost</i>. 2015;13:858; Kavakli K, et al. <i>J Thromb Haemost</i>. 2015;13(3):360-369; Saxena K, et al. <i>Haemophilia</i>. 2016;22(5):706-712; Chowdary P, et al. <i>Thromb Haemost</i>. 2020;120(5):728-736; Khair K, et al. <i>Haemophilia</i>. 2018;24(1):85-96; Mahlangu J, et al. <i>Eur J Haematol</i>. 2020;104(6):594-601; Nogami K, et al. <i>Haemophilia</i>. 2018;24(5):e328-e337; Wang C, et al. <i>Hematology</i>. 2023;28(1):2250601; Elalfy M, et al. <i>Haemophilia</i>. 2022;28(1):65-72; Li Z, et al. <i>Res Pract Thromb Haemost</i>. 2020;4(SUPPL 1):544-545; Prezotti ANL, et al. <i>Blood</i>. 2017;130; Ryu JE, et al. <i>Blood Res</i>. 2015;50(4):248-253; Sun J, et al. <i>Thromb Res</i>. 2023;226:56-60; 	 33. Nik Mohd Salim NN. <i>Haemophilia</i>. 2020;26:33; 34. Rivard GE, et al. <i>Haemophilia</i>. 2013;19(3):449-455; 35. Zulfikar B, et al. <i>J Pediatr Hematol Oncol</i>. 2019;41(6):e355-e358; 36. Shapiro AD, et al. <i>J Blood Med</i>. 2021;12:991-1001. Published 2021 Nov 20; 37. Mancuso ME, et al. <i>Blood</i>. 2017;130; 38. Young G, et al. <i>Blood</i>. Dec 2019;134(24):2127-2138; 39. Callaghan M, et al. <i>Res Pract Thromb Haemost</i>. 2019;3; 40. Wall C, et al. <i>Res Pract Thromb Haemost</i>. 2020;4(SUPPL 1):462; 41. Poon MC, et al. <i>Blood</i>. Nov 2022;140:8465-8467; 42. Oldenburg J, et al. <i>Pediatr Blood Cancer</i>. 2020;67(10):e28474; 43. Ettingshausen CE, et al. <i>Ther Adv Hematol</i>. 2023;14:20406207231184323. Published 2023 Jul 24. 44. Available at: db.yaozh.com 45. Hunan Province Current Medical Service Price List (2022) 			
e VS, et al. J Thromb Haemost. 2008;6(8):1319-1326; LA, et al. J Thromb Haemost. 2012;10(3):359-367;	31 . Camelo RM, et al. <i>J Thromb Haemost</i> . 2022;20(11):2526-2537; 32 . Park YS, Yoon HJ. <i>J Thromb Haemost</i> . Jun 2015;13:861-861;	46. Available at: apps.who.int/gho/data/view.main.6034047. Available at: data.stats.gov.cn			

DISCLOSURE AND ACKNOWLEDGEMENTS •

The study was funded by Takeda (China) International Trading Co., Ltd. Congling Gu and Zhenguo Wang are employees of Takeda. Other authors have none to declare. Takeda Pharmaceutical Company Limited has provided the scientific review of the poster. Medical writing support for the development of this pharmacoeconomic analysis under the direction of the authors was provided by Changsha Normin Health Technology Ltd. and funded by Takeda (China) International Trading Co., Ltd.

Song X, et a
 Merlin S, et
 Ljung R, et
 Auerswald
 Jardim LL, et
 Peyvandi F,
 Taki M, et a
 Calvez T, et
 Auerswald
 Auerswald
 Auerswald
 Auerswald
 Solitation LL,
 Collins PW
 Prezotti A

Olivieri M
 Blanchett
 Valentino

This poster is intended for healthcare professionals