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BACKGROUND

* Context: Health economic modelling (HEM), crucial for assessing the cost-effectiveness e Various reasoning algorithms using prompt engineering, such as Chain of
of healthcare interventions, is a labour-intensive process requiring extensive expertise Thought (CoT)!, Tree of Thought (ToT), and CoT-Self-Consistency, were
and time. However, advancements in artificial intelligence (Al), particularly with large explored.
language models (LLMs) such as GPT-4, offer new opportunities to streamline this  To augment the knowledge base of the LLM with domain-specific data, retrieval
process. augmented generation (RAG)?2 was employed. RAG database was populated

* Aim: We explore the feasibility of using LLMs for conceptualizing HEMs by leveraging with HEOR-related guidelines as well as disease specific documents to provide
advanced reasoning algorithms and prompt engineering techniques. A proof-of-concept background and context. The framework was developed in Python along with
exercise was undertaken and a cost-effectiveness model for an anti-cancer therapy in PostgreSQL for database management (Fig. 2). The user input in the form of
advanced breast cancer was developed using a human intelligence (HIl) in-the-loop prompting techniques coupled with augmented knowledge base enabled the
approach (Fig. 1). LLM to produce highly specific and human-expert-like responses.

Figure 2: The working of RAG architecture with an LLM

Figure 1 : Human in the loop approach to incorporating artificial intelligence
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IMPLEMENTATION
d  Static documents pertaining to HEOR guidelines and dynamic Figure 3: The workflow of the Al HEM conceptualisation tool
documents related to disease-specific data was uploaded to the
database.

Textual Inputs

J  The said data was further embedded as high-dimensional vectors
and stored in a vector database to be queried efficiently using cosine
S|m|larlty matching. ﬂ Disease Process

d  CoT prompts were designed emulating human-Llike thought process.
The prompts were further supplemented by user inputs in text
format to provide context to the LLM. —

d  The prompts, input and query were passed to the LLM which further Evnar:wijang Static Vector — V—
queried the vector database to find the documents with the highest nowecee mase Embeddings
similarity index.

d  The retrieved data was used by the LLM to conceptualize the
problem question.

Model
Prompt Engineering Design Plan
Techniques

d  The output was given in the form of 1) a disease process diagram,
2) model structure diagram, and 3) model design plan.

Figure 4: Disease process diagram produced by the Al Figure 5: Model schematic produced by the Al
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