

Assessment of Metformin Failure Among Patients With Type 2 Diabetes Mellitus at a Tertiary Care Center in Central India

Sharma Swati¹ Atal Shubham², Joshi Rajnish², Jhaj Ratinder²,

¹JNU Institute of Medical Sciences & Research Centre, Jaipur, India ²All India Institute of Medical Sciences, Bhopal, India

INTRODUCTION

- Type 2 Diabetes mellitus (T2DM) is a non-communicable disease of pandemic proportions.
- India becoming 'diabetes capital of world' with ~ 80 million adult patients.
- Metformin is generally recommended as first-line therapy for T2DM due to high efficacy, low cost and additional benefits.
- Primary or secondary metformin failure is common in clinical practice. and requires appropriate add on 2nd line therapy.
- Patients unable to achieve adequate glycaemic control (HbA1c < 7%) not achieved despite sufficient duration of treatment with maximally tolerated metformin dose (atleast ≥ I g/day)
- Real world evidence (RWE) generation through prospective Comparative Effectiveness Research (CER) study is an important tool to address such issues.

OBJECTIVES

- To characterize metformin monotherapy failure
- To identify factors that predict likelihood of failure to optimise antihyperglycaemic therapy.

METHODOLOGY

Study Design: Case Control study

Study Population: T2DM outpatients coming to the diabetes

specialty clinics at AIIMS Bhopal, India.

Data collection: From the prescriptions / OPD diaries on the day of

clinic visits

Proposed sample size: 60 in each group (Total – 120)

Definitions:

Cases: Those who experienced metformin failure, primary or secondary.

Controls: Those who were adequately controlled on metformin monotherapy.

Inclusion criteria

- 1. Adult with type 2 diabetes aged 18 years and above of either sex.
- 2. Patients who gave consent to participate in the study.
- 3. For cases Having inadequate glycemic control (HbA1c > 7% and/or FBS > 140 mg/dl) with metformin monotherapy (\geq 1500 mg daily or maximally tolerated dose for \geq 12 weeks).

For controls - Having adequate glycaemic control control (HbA1c ≤ 7% and/or FBS ≤ 140 mg/dl) with metformin monotherapy

Exclusion criteria

- 1. Persons with any type of diabetes other than type 2.
- 2. Having any serious mental illness affecting medication adherence
- 3. Concomitant administration of strong CYP3A4/5 inhibitors

Statistical Analysis:

- ✓ Data was recorded and analysed using Microsoft Excel version 2021, with calculation of frequencies / proportions, mean / median with standard deviation / interquartile range.
- ✓ Comparisons were done using t test and chi square test.
- ✓ Odds ratio were calculated for factors expected to predict metformin failure.
- ✓ Logistic regression model was generated.

Ethical Considerations:

The study was conducted following the ICH and Indian GCP guidelines. It was performed after obtaining permission from the Institutional Human Ethics Committee, AIIMS Bhopal (IHEC-LOP/2019/MD0104)

RESULTS

- A total of 124 participants were enrolled 63 cases and 61 controls.
- Gender distribution showed predominance of males in both groups (59% vs 54%)
- ❖ Mean age was also comparable but odds of metformin failure were relatively higher for age < 40 or 50 years.
- ❖ Odds of metformin failure were also relatively higher (OR: 1.62) for a BMI \geq 23 kg/m.
- **♦** HbA1c % at therapy initiation was significantly higher in the metformin failure group (8.87 \pm 1.63) versus monotherapy controls (7.89 \pm 1.45); p = 0.02, OR of 4.33 (1.83-8.26) for HbA1c ≥ 7% and similar difference was seen for FBS (p = 0.03), with an OR of 2.14 for values ≥140 mg/dl.
- ❖ The mean blood pressures and lipid parameters were not significantly different in the two groups.
- Medication adherence, pill burden, duration of diabetes, tobacco and alcohol use, family history and history of comorbidities were similar
- In the logistic regression model, duration of diabetes, HbA1c at metformin initiation, and metformin dose at initiation came out to be significant (p≤ 0.05).

Table 1. Demographic and anthropometric characteristics of metformin monotherapy and failure groups

Demographics	Metformin Monotherapy (N =61) n (%) / Mean ± SD	Metformin Failure (N= 63) n (%) / Mean ± SD	p-Value	Mean difference	95% CI of mean difference			
Females	25 (41)	29 (46)	0.59	-	-			
Males	36 (59)	34 (54)	-	-	-			
Age (years)	53.49 ± 12.47	52.05 ± 11.33	0.50	1.44	-2.79-5.68			
Age for Females (years)	53.40 ± 11.90	50.72 ± 10.66	0.39	2.68	-3.55-8.90			
Age for Males (years)	53.55 ± 13	53.18 ± 11.90	0.90	0.38	-5.58-6.34			
Anthropometrics								
Weight (kg)	68.17 ± 12.06	68.76 ± 11.44	0.78	-0.59	-4.77 - 3.59			
BMI (kg/m²)	24.95 ± 3.74	25.46 ± 3.75	0.45	-0.51	-1.84 - 0.82			
BMI for Females (kg/m²)	25.73 ± 4.20	26.09 ± 4.32	0.75	-0.37	-2.70 - 1.97			
BMI for Males (kg/m²)	24.41 ± 3.35	24.91 ± 3.14	0.52	-0.51	-2.06 - 1.04			

Table 2. Glycaemic parameters among patients of metformin								
monotherapy and failure groups								
Glycaemic Parameter	Metformin Monotherapy (N =61)	Metformin Failure (N=63)	p- Value	Mean difference	95% CI of mean difference			
HbA1c at metformin initiation (%)	7.89 ± 1.45 (n=27)	8.87 ± 1.63 (n=29)	0.02	-0.98	-1.80 — (-0.15)			
HbA1c at follow- up (%)	6.76 ± 0.89 (n=41)	8.55 ± 1.42 (n=44)	<0.00	-1.79	-2.30 – (-1.28)			
FBS at metformin initiation (mg/dl)	130.22 ± 24.62 (n=25)	153.83 ± 45.15 (n=22)	0.03	-23.61	-45.37 – (-1.86)			
FBS at follow-up (mg/dl)	129.75 ± 41.14 (n=37)	168.59 ± 46.40 (n=42)	<0.00	-38.84	-58.60 – (-19.23)			
RBS at metformin initiation (mg/dl)	190.33 ± 49.65 (n=15)	221.18 ± 79.40 (n=28)	0.13	-30.85	-70.74 – 9.04			
RBS at follow-up (mg/dl)	171.03 ± 64.94 (n=31)	242.99 ± 71.12 (n=41)	<0.00	-71.96	-104.10 - (-39.82)			

Log (p/l-p) = -13.72 + 0.187*BMI + 0.679*HbA1c at metformin initiation + 0.002*Duration of Diabetes -0.002* Metformin dose at initiation + Concomitant aspirin + HTN + Hypothyroidism

Conclusion: Our results show that HbA1c / FBS at initiation, age, BMI, dose at initiation could be predictors to identify patients likely to have metformin failure.

Further studies with higher sample size shall validate the results.

* References:

- Diabetes Atlas. International Diabetes Federation. 10th edition. 2021. Available at http://www.diabetesatlas.org/.
- Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2022. American Diabetes Association.
- Diabetes Care 2022 Jan; 45 (1): S125–S143.

 Brown J, Conner C, Nichols GA. Secondary Failure of Metformin Monotherapy in Clinical Practice. Diabetes Care 2010 Mar; 33(3): 501-506.
- Indian Council of Medical Research. Guidelines for management of Type 2 Diabetes. Available from: https://www.icmr.nic.in/content/guidelines-management-type-2-diabetes

Presenting author:

Dr. Shubham Atal, MD
Associate Professor, Pharmacology
All India Institute of Medical Sciences, Bhopal, India
Email: shubham.pharm@aiimsbhopal.edu.in

