An introduction to NMAstudio2.0 and its embedded knowledge translation tool for network meta-analysis

Tianqi Yu¹, Sally Yaacoub¹, Isabelle Boutron^{1,2}, Anna Chaimani¹ ¹Université Paris Cité, Center of Research in Epidemiology and Statistics, Inserm, Paris, France ²Centre d'Epidémiologie Clinique, AP-HP, Hôpital Hôtel Dieu, F-75004, Paris, France

Introduction

Problems of performing NMAs:

- Complex methodology
- Statistical &coding expertise required
- Hard to effectively share results

Objectives of NMAstudio :

• Simplify the whole procedure of

Problems of presenting results from NMAs:

- Significantly high volume of information
- NMAs with important information not reported
- No standard format

Objectives of KTtool:

• Summarize and present the results of NMA in a

To develop the KTtool

- The experts committee has been established.
- The experts committee members will be involved in the whole procedures for the development of the tool.
- Intwerviews with different stakeholders will be performed to understand their needs.

Languages used for development

performing NMAs

- Enhances the visulazition of results
- Facilitate thec ommunication of results
- comprehensible and transparent way
- To accommodate the diverse needs of different stakeholders
- assist proper interpretation of the findings

• Javascript • CSS

* The development code is fully openly accessible at https://github.com/CER-METHODS/NMAstudio-app.

NMAstudio2.0 https://www.nmastudioapp.com/home

Several pages in NMAstudio2.0:

					Knowledge	
Homepage	Setup		Results		translation tool	
• Breifly Introduction	Data Upload		• Data & Transitivit	ty		
• Tutorial	Variable Selection	n	• Forest plots			
Contact Information	Run Analysis		• League table			
References			• Consistency & Re	eporting bias		
			• Rabking			

Step 1. Upload your dataset & Select secveral variables form it

Scalable Knowledge translation tool

Several interactive functions in the tool:

Several modules in the tool:

Others

Select your profile

1.

3.

Reference Treatment	P score (Ranking)	Risk per 1000	Scale lower (forestplots)	Scale upper (forestplots)	
> ADA	0.45	Enter a number	Enter a value for lower	Enter a value for upper	
> APRE	0.22	Enter a number	Enter a value for lower	Enter a value for upper	
> BIME	0.9	Enter a number	Enter a value for lower	Enter a value for upper	
> BRODA	0.66	Enter a number	Enter a value for lower	Enter a value for upper	
> CERTO	0.37	Enter a number	Enter a value for lower	Enter a value for upper	
> CICLO	0.27	Enter a number	Enter a value for lower	Enter a value for upper	
> DEUCRAVA	0.48	Enter a number	Enter a value for lower	Enter a value for upper	
> ETA	0.3	Enter a number	Enter a value for lower	Enter a value for upper	

Example 1.

Reference Treatment	P score (Ranking)	Risk per 1000	Scale lower (forestplots)	Scale upper (forestplots)
> ADA	0.45	Enter a number	Enter a value for lower	Enter a value for upper
> APRE	0.22	Enter a number	Enter a value for lower	Enter a value for upper

Reference Trea	itment	P score (Ranking)	Risk per 100	90	Scale lowe (forestplot	r'≡ s)		Scale up (forestp	oper lots)
ADA		0.45	Enter a num	iber	This is for the forest	plots in the nes	ted table	iter a value	e for upper
Treatment	Mixed effect 95%Cl	Absolute Effect	Absolute Difference		Forest plo	t			Direct ef (95%)
	RR			0.16	0.37 0.580.79		3 5	7 9	RF
APRE	0.44 (0.26, 0.76)			F					
BIME	1.75 (1.59, 1.91)								1.6) (1.42, 1
BRODA	1.39 (1.22, 1.58)								
CERTO	0.77 (0.57, 1.04)								

Example 2.

Specify a value for the reference treatment to get the absolute values in the nested table.

Reference Treatn	nent	P score (Ranking)	Risk per 100
✓ PBO		0	20
Reference Trea	tment	P score (Ranking)	Risk per 10
✓ PBO		0	20
Treatment	Mixed effect 95%Cl	Absolute Effect	Absolute Difference
	RR		
ADA	0.44 (0.26, 0.76)	8 per 1000	12 less per 1000
APRE	1.75 (1.59, 1.91)	35 per 1000	15 more per 1000
	1.39		-

Click a cell in 'Reference Treatment' to open the nested table.

Example 3.

Options to display different information in the forest plots in the nested table.

Options (For the	forest plots in the table)
Enter the minimum clinical difference value:	Add prediction interval to forestplots
0.2	Add direct effects to forestplots
0.2	Add indirect effects to forestplots

Treatment	Mixed effect 95%Cl	Forest plot	
	RR _	0.16 0.37 0.58 0.79 1	3 5 7 9
ADA	0.44 (0.26, 0.76)	▶	
APRE	1.75 (1.59, 1.91)		4
BIME	1.39 (1.22, 1.58)		
BRODA	0.77 (0.57, 1.04)		

> FUM	0.12	Enter a number	Enter a value for lower	Enter a value for upper
> GUSEL	0.65	Enter a number	Enter a value for lower	Enter a value for upper
> IFX	0.96	Enter a number	Enter a value for lower	Enter a value for upper
> IXE	0.9	Enter a number	Enter a value for lower	Enter a value for upper

Discussion

- NMAstudio offers an extensive interactivity between the network plot and a range of essential NMA outputs. •
- NMAstudio offers more flexibility with no restrictions on variable names and number of outcomes. •
- NMAstudio generates boxplots for transitivity checks and provides options to save and load projects. •
- KTtool overcomes the problem of space restrictions.
- KTtool allow end-users to get a global picture of data, assumptions, results, limitations, uncertainty, etc.
- KTtool makes the communication of findings more efficiently.

Acknowledgement

We thank the members of the expert committee for their participation in this project.

This project has received funding from the French National Research Agency under the project ANR-22-CE36-0013-01.

agence nationale de la recherche