
►Machine learning (ML) tools for the title and abstract (ti/ab) screening phase of systematic reviews 
(SRs) include, among others, generative artificial intelligence and active learning-based tools.

►Active learning tools, such as ASReview,1 allow reviewers to (Figure 1):

►Retain control over screening decisions

►Only screen a subset of the ti/ab records by pre-defining a stopping rule that helps determine when 
most relevant records likely have been found

►However, concerns remain about:

►Reproducibility of the screening using ML tools

►Recall (i.e. proportion of relevant records identified during screening), especially in complex and 
varied record sets (i.e. sets containing various study types and populations)

►Choice of optimal stopping rule, as multiple options, ranging from simple (e.g. 10% of the set of 
consecutive excludes) to complex (e.g. Screen-Apply-Find-Evaluate [SAFE]2 procedure) have been 
proposed
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Title and abstract screening for systematic reviews can be time consuming. A variety of machine learning applications are now
available to assist researchers. 

We tested an ML tool and 5 stopping rules for ti/ab screening for an SR of the natural history of a rare genetic disorder to 
assess the reliability and performance on a variable dataset and with a complex research question.

Tailor the screening experience to your preferences

►Screening in a browser-based application (e.g. ASReview) allows the use of browser add-ons (e.g. multi 
highlight add on in Google Chrome) that can increase screener comfort and efficiency.

Ensure that the screening criteria are clear and reliably applicable before screening 

►Because every reviewer decision affects which reports are shown to the reviewer next, a thorough pilot 
screening is imperative for reliable screening results.

Choose a stopping rule that fits your project

►Stopping rules balance reviewer workload and recall and range from simple to complex. Different rules 
will be needed to suit differing projects and objectives.

Follow the evolving best practice

►ML-supported SR methods have become more widely accepted in the last year, with, for example, the 
National Institute for Care Excellence (NICE) issuing guidance for company submissions.5

ML-supported screening can substantially decrease reviewer workload while maintaining high recall, even when 
applied to complex research topics.

►Use of ASReview can greatly limit screening time during the ti/ab screening stage, as 51% of relevant 
records were found after screening 12% of the sample (vs screening 52% of the sample to find the 
same number of relevant records in Excel).

►Despite the variability of the set, ASReview reliable presented relevant records early in the screen.

►ASReview (or other ML applications) may supplement or replace manual ti/ab screening in future.

BACKGROUND

METHODS

RESULTS With ASReview, 51% of relevant records were found after reviewing only 12% of the set. In Excel, 52% needed to be screened 
to find the same number of relevant records.

RECOMMENDATIONS AND 
CONCLUSION

TI/AB SCREEN

►Of 1,347 records, Reviewer 1 marked 109 and Reviewer 2 
marked 90 records as relevant (Figure 2).

►The agreement between reviewers was lower than in the pilot 
screen (91%; κ=0.37 [fair agreement]).

►After conflict resolution, 97 reports in addition to the pilot 
screen were included (overall inclusion rate: 7.5%).

►Screening in ASReview found relevant reports notably faster 
than screening in Excel.

►In ASReview, most (51%) relevant reports were found after 
screening only 12% of the sample.

►In Excel, 52% of the sample needed to be screened to 
achieve the same recall.

►The stopping rule of finding 95% of estimated relevant records 
was not reached.
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SEARCH RESULTS

►2,521 reports retrieved

►1,074 reports deduplicated 

►1,447 reports included in the 
title and abstract screen 

PILOT SCREEN

►Substantial 93% (κ=0.68) 
agreement between 
reviewers

►12% inclusion rate estimated, 
resulting in 161 expected 
relevant reports remaining in 
the unscreened set

Figure 2. Recall during ti/ab screening in Excel and ASReview

RECOMMENDATIONS FOR TI/AB SCREENING USING ACTIVE LEARNING ML CONCLUSION

Figure 1. Screening flow with ti/ab screening tools that use active learning
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ML orders all unlabelled records from most to least likely relevant and shows the 
researcher the next most likely relevant record from the set.
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Labelled 
records

►We conducted an SR to 
describe the natural history of 
a rare genetic disorder.

►We searched multiple 
databases.

►We deduplicated search 
results using Endnote X8.

►Two reviewers screened the 
sample. Reviewer 1 used 
Microsoft Excel; Reviewer 2 
used ASReview. 

SET UP

►Both reviewers assessed 100 
random reports to align their 
interpretation of the inclusion 
criteria.

►The number of expected 
includes was calculated 
based the inclusion rate in 
the pilot screening after 
conflicts were resolved.

PILOT SCREEN

Reviewer 1: Excel

Reviewer 2: ASReview

►Screened the set in random order and stopped when all records 
were reviewed 

TI/AB SCREEN

►Screened the set in ASReview1 and stopped when stopping rules 
were reached

►ASReview was set up for screening using the recommended 
model settings (TF-IDF, naïve Bayes, maximum, dynamic 
sampling)2

►Decisions from the pilot screen were used to train the algorithm 
initially

Reviewer 2: ASReview (continued)

►Tested five stopping rules: 

►SAFE procedure, which includes multiple criteria and a second 
screen of unlabeled records with a more complex model3

►50 consecutive irrelevant records

►2.5% and 10% of the set of unscreened records in 
consecutively irrelevant records

►95% of estimated relevant records found (based on inclusion 
rate from pilot screen)4


