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• Systematic Literature Reviews (SLRs) synthesize evidence to guide clinical 

decisions and health policy. Data extraction, a detailed and labor-intensive 

task, is often a bottleneck in the review process [1].

• Recent AI models, like GPT-4o, offer new opportunities to automate data 

extraction by processing complex information with minimal human input [2]. 

GPT-4o demonstrates potential in zero-shot learning, handling tasks without prior 

specific training.

• This study evaluates GPT-4o’s ability to extract detailed data from NSCLC trial 

publications, potentially streamlining SLRs by saving time and resources while 

achieving high accuracy.

INTRODUCTION

• Data Source Selection: We used 12 clinical trial publications on NSCLC 

interventions, with quality-checked information to benchmark GPT-4o’s 

performance.

• Data entry and template definition: Defined 39 study design data elements, 

resulting in 468 data points, organized into a standardized template for 

consistent extraction.

• Text conversion and prompt preparation: Publications were converted from PDF 

to text using Python, then processed with prompts containing extraction 

instructions to guide GPT-4o.

• API integration and data processing: The prepared text and prompts were sent 

to GPT-4o via an Azure-hosted API, with extracted data automatically 

structured for easy comparison.

• Accuracy assessment: GPT-4o’s extracted data were compared to manual 

entries, with discrepancies classified as significant, minor, fabricated, or partially 

missing data.

• Error analysis and contextual complexity: Errors were analyzed, focusing on 

complex entries (e.g., subgroup analyses), highlighting GPT-4o’s interpretive 

challenges.

• Efficiency measurement: Finally, we recorded the time taken by GPT-4o to 

extract data elements per publication and calculated the average extraction 

time. This metric was then compared to manual extraction times to evaluate 

the model’s efficiency gains.

METHODS

• Accuracy assessment: Measure GPT-4o’s precision in extracting study design 

elements from clinical trials.

• Strengths and limitations: Identify areas where GPT-4o performs well or 

encounters challenges due to data complexity.

• Efficiency gains: Compare time savings achieved with GPT-4o versus manual 

extraction.

• Future applications: Explore how AI-driven extraction can streamline SLRs and 

support scalable data processing in clinical research.

OBJECTIVES

RESULTS

• GPT-4o achieved an 88.7% accuracy rate, successfully extracting 415 out of 468 data elements (Table 1 shows some examples).

• In 37 instances, GPT-4o provided more detailed information than the manual extraction process, illustrating its zero-shot learning potential.

• In 53 cases, elements were generated erroneously: 

• Significant Errors (15): Misinterpretations impacting data integrity, where GPT-4o misunderstood specific data elements or contexts.

• Minor Errors (8): Small formatting or wording inconsistencies that did not affect overall accuracy.

• Fabricated Data (6): Instances where GPT-4o generated data not present in the source, indicating over-generalization.

• Partially Missing Data (24): Missing information in responses, often linked to entries requiring complex contextual understanding.

• A significant concentration of errors (29) was observed in 8 data elements that require complex contextual understanding, such as 

subgroup analyses and details of therapeutic protocols. 

• The pipeline averaged 27.75 seconds per publication, a notable time savings versus manual extraction.

Group Data Element Human Response GPT4o Response

Trial 

Characteristics

Study start - Completion date 9/19/2014 - May 9, 2016 September 19, 2014 to October 29, 2015

Countries Included Specify China 

only studies

Australia, Austria, Belgium, Canada, Denmark , Finland, France, Germany, Ireland, Israel, Italy, 

Japan, Netherlands,  Spain, United Kingdom, United States,

'United States', 'Spain', 'Canada', 'Australia', 'Austria', 'Germany', 'Israel', 'Italy', 

'Japan'

Follow-up and 

Data cut-off

Length of follow-up 6 weeks Median follow-up time was 28.1 months for B+CP and 26.9 months for Pl+CP.

Data cut-off date Not Reported November 8, 2017

Other details

Frequency of outcome assessment

Not Reported After random assignment, assessments were performed at the end of every second 

treatment cycle until first progression. One final tumor scan was performed 4 to 6 

weeks after the first progression.

Not Reported Every 6 weeks from day 1 of cycle 1 for the first 48 weeks, and every 9 weeks 

thereafter until the occurrence of disease progression.

Tumour imaging by CT (preferred) or MRI was done at baseline, every 6 weeks for the first 18 weeks, 

then every 9 weeks through the first 12 months and every 12 weeks thereafter.

Every 6 weeks for the first 18 weeks, then every 9 weeks through the first 12 months 

and every 12 weeks thereafter.

Not Reported After random assignment, assessments were performed at the end of every second 

treatment cycle until first progression. One final tumor scan was performed 4 to 6 

weeks after the first progression.

Not Reported Radiographic tumour imaging was done at baseline and scheduled for every 9 

weeks for the first 45 weeks, then every 12 weeks thereafter.

Not Reported Tumor imaging was scheduled for weeks 6 and 12, then every 9 weeks through 

week 48 and every 12 weeks thereafter.

Not Reported Every 6 weeks (± 7 days) for the first 48 weeks following cycle 1, day 1; after 48 

weeks, every 9 weeks (± 7 days).

Age
≥18 years 62.5 years (median, pembrolizumab plus chemotherapy group); 63.2 years 

(median, chemotherapy group)

Exclusion criteria

Patients were ineligible if they were receiving systemic glucocorticoids (excluding daily 

glucocorticoid- replacement therapy for conditions such as adrenal or pituitary insufficiency) or 

other immunosuppressive treatment or if they had untreated brain metastases, active autoimmune 

disease for which they had received systemic treatment during the previous 2 years, active 

interstitial lung disease, or a history of pneumonitis for which they had received glucocorticoids. 

Patients receiving systemic glucocorticoids or other immunosuppressive treatment, 

untreated brain metastases, active autoimmune disease, active interstitial lung 

disease, or a history of pneumonitis.

Subsequent therapies allowed YES No crossover to the atezolizumab group was permitted.

Table 1. Examples of data extraction by human reviewers and GPT-4o, showing superior (green) and correct responses (light green), minor discrepancies (yellow), fabricated response (light orange), moderate (orange) and significant errors (red).

• GPT-4o demonstrates strong potential in automating data extraction for SLRs, achieving an 88.7% 

accuracy rate and significantly reducing manual workload. Its zero-shot learning capabilities allow 

it to handle structured data effectively, making it valuable for large-scale reviews where efficiency 

is key.

• GPT-4o struggles with contextually complex data elements, such as subgroup analyses and 

detailed protocols, where errors were more frequent. This suggests a need for further refinement, 

especially for data requiring specialized understanding.

• GPT-4o’s automation capabilities can accelerate evidence synthesis for clinical and policy 

applications. With additional fine-tuning, the model could perform even better on complex study 

designs, expanding its utility in SLRs.

CONCLUSIONS
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• Systematic Literature Reviews (SLRs) synthesize evidence to guide clinical 

decisions and health policy. Data extraction, a detailed and labor-intensive 

task, is often a bottleneck in the review process.

• Recent AI models, like GPT-4o, offer new opportunities to automate data 

extraction by processing complex information with minimal human input. GPT-

4o demonstrates potential in zero-shot learning, handling tasks without prior 

specific training.

• This study evaluates GPT-4o’s ability to extract detailed data from NSCLC trial 

publications, potentially streamlining SLRs by saving time and resources while 

achieving high accuracy.

INTRODUCTION

• Data Source Selection: We used 12 clinical trial publications on NSCLC 

interventions, with quality-checked information to benchmark GPT-4o’s 

performance.

• Data entry and template definition: Defined 39 study design data entries, 

resulting in 468 data points, organized into a standardized template for 

consistent extraction.

• Text conversion and prompt preparation: Publications were converted from PDF 

to text using Python, then processed with prompts containing extraction 

instructions to guide GPT-4o.

• API integration and data processing: The prepared text and prompts were sent 

to GPT-4o via an Azure-hosted API, with extracted data automatically 

structured for easy comparison.

• Accuracy assessment: GPT-4o’s extracted data were compared to manual 

entries, with discrepancies classified as significant, minor, fabricated, or partially 

missing data.

• Error analysis and contextual complexity: Errors were analyzed, focusing on 

complex entries (e.g., subgroup analyses), highlighting GPT-4o’s interpretive 

challenges

• Efficiency measurement: Finally, we recorded the time taken by GPT-4o to 

extract data elements per publication and calculated the average extraction 

time. This metric was then compared to manual extraction times to evaluate 

the model’s efficiency gains.

METHODS

• Accuracy assessment: Measure GPT-4o’s precision in extracting study design 

elements from clinical trials.

• Strengths and limitations: Identify areas where GPT-4o performs well or 

encounters challenges due to data complexity.

• Efficiency gains: Compare time savings achieved with GPT-4o versus manual 

extraction.

• Future applications: Explore how AI-driven extraction can streamline SLRs and 

support scalable data processing in clinical research.

OBJECTIVES

RESULTS

GPT-4o displayed promising accuracy and efficiency in automating data extraction for SLRs, with the following key 

findings:

• Overall Accuracy:

• Achieved an 88.7% accuracy rate, successfully extracting 415 out of 468 data elements.

• Demonstrated strong capability in accurately processing structured data with minimal human intervention.

• In 37 instances, GPT-4o provided more detailed information than the manual extraction process, illustrating its zero-

shot learning potential.

• Added value by inferring details that were sometimes overlooked in manual extraction, potentially enhancing data 

quality in SLRs.

• Error Analysis: A total of 53 errors were observed, categorized as follows:

• Significant Errors (15): Misinterpretations impacting data integrity, where GPT-4o misunderstood specific data 

elements or contexts.

• Minor Errors (8): Small formatting or wording inconsistencies that did not affect overall accuracy.

• Fabricated Data (6): Instances where GPT-4o generated data not present in the source, indicating over-

generalization.

• Partially Missing Data (24): Missing information in responses, often linked to entries requiring complex contextual 

understanding.

• Contextual Complexity and Error Distribution: Errors clustered in fields needing nuanced understanding (e.g., subgroup 

analyses), indicating limits in handling context-heavy data.

• Efficiency: Averaged 27.75 seconds per publication, a notable time savings versus manual extraction.

• SLR Automation Potential: GPT-4o shows significant promise for streamlining SLRs, with efficiency gains and reduced 

workload, though complex data may require further model refinement

Group Data Element Human Response GPT4o Respone

Trial Characteristics

Study start - Completion date 9/19/2014 - May 9, 2016 September 19, 2014 to October 29, 2015

Countries Included Specify 

China only studies

Australia, Austria, Belgium, Canada, Denmark , Finland, France, Germany, Ireland, Israel, Italy, Japan, Netherlands,  

Spain, United Kingdom, United States,

'United States', 'Spain', 'Canada', 'Australia', 'Austria', 'Germany', 'Israel', 'Italy', 'Japan'

Follow-up and Data cut-

off

Length of follow-up 6 weeks Median follow-up time was 28.1 months for B+CP and 26.9 months for Pl+CP.

Data cut-off date Not Reported November 8, 2017

Other details

Frequency of outcome

assessment

Not Reported After random assignment, assessments were performed at the end of every second treatment cycle until first 

progression. One final tumor scan was performed 4 to 6 weeks after the first progression.

Not Reported Every 6 weeks from day 1 of cycle 1 for the first 48 weeks, and every 9 weeks thereafter until the occurrence of disease 

progression.

Tumour imaging by CT (preferred) or MRI was done at baseline, every 6 weeks for the first 18 weeks, then every 9 

weeks through the first 12 months and every 12 weeks thereafter.

Every 6 weeks for the first 18 weeks, then every 9 weeks through the first 12 months and every 12 weeks thereafter.

Not Reported After random assignment, assessments were performed at the end of every second treatment cycle until first 

progression. One final tumor scan was performed 4 to 6 weeks after the first progression.

Not Reported Radiographic tumour imaging was done at baseline and scheduled for every 9 weeks for the first 45 weeks, then every 

12 weeks thereafter.

Not Reported Tumor imaging was scheduled for weeks 6 and 12, then every 9 weeks through week 48 and every 12 weeks thereafter.

Not Reported Every 6 weeks (± 7 days) for the first 48 weeks following cycle 1, day 1; after 48 weeks, every 9 weeks (± 7 days).

Age ≥18 years 62.5 years (median, pembrolizumab plus chemotherapy group); 63.2 years (median, chemotherapy group)

Exclusion criteria

Patients were ineligible if they were receiving systemic glucocorticoids (excluding daily glucocorticoid- replacement 

therapy for conditions such as adrenal or pituitary insufficiency) or other immunosuppressive treatment or if they had 

untreated brain metastases, active autoimmune disease for which they had received systemic treatment during the 

previous 2 years, active interstitial lung disease, or a history of pneumonitis for which they had received 

glucocorticoids. 

Patients receiving systemic glucocorticoids or other immunosuppressive treatment, untreated brain metastases, active 

autoimmune disease, active interstitial lung disease, or a history of pneumonitis.

Subsequent therapies allowed YES No crossover to the atezolizumab group was permitted.
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• Systematic Literature Reviews (SLRs) play a critical role in 
synthesizing evidence across studies, guiding clinical 
decisions, and shaping health policy. At the heart of this 
process is data extraction—the detailed task of identifying 
and pulling relevant information from each study, such as 
study design elements, participant characteristics, 
interventions, and outcomes. This process is inherently 
labor-intensive, requiring expert time, attention to detail, 
and substantial resources, often making it a bottleneck in the 
systematic review process.Recent advances in generative 
artificial intelligence (AI) models, like OpenAI’s GPT-4, have 
opened new pathways for automating such labor-intensive 
tasks. These models can process complex textual 
information, potentially extracting structured data with 
minimal human intervention. GPT-4o, a model tuned for 
task-specific outputs, has shown promise in zero-shot 
learning, where it can understand and respond to new data 
requests without explicit prior training on the specific 
task.This study aims to assess the capabilities of GPT-4o in 
performing detailed data extraction from clinical trial 
publications. By focusing on metastatic non-small cell lung 
cancer (NSCLC) studies, we examine whether GPT-4o can 
accurately identify and retrieve complex study design 
elements, often requiring nuanced contextual 
understanding. The potential for using GPT-4o in SLRs is 
significant, as it could streamline data extraction processes, 
saving researchers time and resources while maintaining 
high levels of accuracy.

• An SLR on CAR-T therapy for multiple myeloma in Australia 
retrieved 989 publications from Embase and Pubmed.

•  Entering PICOS criteria in the ‘Custom instructions’ section of 
ChatGPT 3.5 (free browser version), we asked the LLM to 
generate 50 abstracts meeting inclusion criteria and 50 with 
exclusion criteria. The prompt and iterations used to generate 
included abstracts are shown in Figure 1 bellow: 

METHODS

REFERENCES
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OBJECTIVE

This study evaluates the effectiveness of AI-generated 
decisions in training machine learning (ML) models for 
identifying of relevant publications in systematic literature 
reviews (SLRs).

• Our study used ChatGPT3.5 to generate data for training 

machine learning models, which allowed model training to 

start sooner without requiring large amounts of real data 

upfront. 

• Combining real data with some AI-generated publications in 

scenario C yielded better outcomes compared to analyzing 

publications in random order. Adding AI-generated 

publications helped balance the data, resulting in a more 

accurate model. 

• Interestingly, we found that a completely made-up dataset 

could be effectively used to achieve good results even 

before beginning the screening process (scenario D). This 

represents a novel application of AI for quickly reviewing a 

large volume of studies.

• By using artificial data for early model training, significant 

time and effort can be saved during the review process. 

These findings suggest machine learning could serve as a 

second reviewer in systematic literature reviews, improving 

efficiency while preserving accuracy and rigor by keeping 

one human reviewer involved.

Limitations

• Generating abstracts with ChatGPT remains time consuming 

and needs the human in the loop to verify the quality of the 

abstracts. 

• 4 iterations were needed along the process to generate the 

50 abstracts with ChatGPT. Additionally, ChatGPT tends to 

get tired, and we had to generate the abstracts per batches 

of 10. When requesting a higher number of abstracts (e.g. 

25), ChatGPT started to provide much shorter and similar 

samples. We also had to remind it to vary the numerical 

estimates and the narrative within abstracts. 

•  Trained with 100 real abstracts randomly selected and 
annotated by experts

Scenario A: Human decisions 

•  Trained with 100 AI-generated abstracts (50 for 
inclusion and 50 for exclusion)

Scenario B: AI decisions

•  Trained with 100 real abstracts (scenario A) enriched 
with 50 AI-generated inclusion abstracts

Scenario C: Combined decisions

•  Trained with top 100 real abstracts based on scores 
from scenario B

Scenario D: AI-derived decisions 

• Results of the logistic regression model were plotted on 
screening progression curves, showing the percentage of 
included publications found versus the percentage of 
publications screened, allowing us to calculate performance 
based on the Area Under the Curve (AUC). The curves from 
the four scenarios were compared with optimal screening 
(100%) where included publications appear first and manual 
screening (50%), where publications appear in random order 
(Figure 3).

Figure 2. Example of one AI-generated abstract

“Title: Immunophenotypic Characteristics Associated with 
Response to Cilta-cel Therapy in Multiple Myeloma: A 
Retrospective Analysis 

Introduction: This retrospective analysis investigates 
immunophenotypic characteristics associated with response to 
cilta-cel therapy in multiple myeloma (MM) patients. Methods: 
MM patients treated with cilta-cel underwent 
immunophenotyping of tumor cells, and treatment responses 
were correlated with baseline characteristics. Results: Patients 
with high expression of B-cell maturation antigen (BCMA) on 
tumor cells demonstrated higher response rates to cilta-cel, 
with an overall response rate (ORR) of 90% compared to 60% in 
BCMA-low patients. Conclusion: Immunophenotypic profiling 
may help identify MM patients most likely to benefit from cilta-
cel therapy, guiding personalized treatment strategies.”

• We trained ML models with a set of abstracts to provide a 
relevance score to the remaining publications, organizing 
them to prioritize the most relevant for inclusion. Four 
scenarios were proposed:

RESULTS

Figure 3. Optimal vs Random screening progress

MSR165

• Scenario A achieved a performance of 79.51%. Scenario B 
demonstrated 74.48%. Scenario C showed the highest 
performance, reaching 81.49%. Scenario D achieved 79.86% 
(see Figures 4 to 7). 

• Scenario C identified 80% of the included publications by 
screening only 50% of the total set, outperforming scenarios 
A and D, which required screening 54% and 59% of the 
publications, respectively. Scenario B needed to screen 69% 
to identify 80% of the included publications.

Figure 4. Scenario A screening progress

Figure 6. Scenario C screening progress

Figure 5. Scenario B screening progress

Figure 7. Scenario D screening progress

DISCUSSION & CONCLUSION

Figure 1. Example of prompts and iterations used to obtain 
the AI-generated abstracts

Inclusion prompt: “Can you generate 10 titles and abstracts 
meeting the specified inclusion criteria using a peer-reviewed 
journal format, with narrative results supported by randomly 
generated numeral estimates? You can use examples from the 
web to generate different narrative structures incorporating 
some of the outcomes listed in the instructions.”

Iterations
1# “The abstracts should have the following structure: 
background, methods, results, conclusion”
2# “Can you generate 10 other similar examples of title & 
abstracts including other criteria than the study type”
3# “can you provide 10 other examples” (to get 20 abstracts)
4# “can you provide 10 other similar examples but varying a 
little bit the outcomes reported according to the instructions” 
(repeat iteration to get 50 abstracts)

• Abstracts of around 200 words with narrative results 
supported by randomly generated estimates followed a set 
structure: introduction, methods, results, and conclusion 
(see example in Figure 2).
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Group Element Type Human Response GPT4o Respone

Trial 

Characteristic

s

Study start - Completion

date

9/19/2014 - May 9, 2016 September 19, 2014 to October 29, 2015

Countries Included 

Specify China only 

studies

Australia, Austria, Belgium, Canada, Denmark , Finland, 

France, Germany, Ireland, Israel, Italy, Japan, 

Netherlands,  Spain, United Kingdom, United States,

['United States', 'Spain', 'Canada', 'Australia', 'Austria', 

'Germany', 'Israel', 'Italy', 'Japan']

Follow-up and 

Data cut-off

Length of follow-up 6 weeks Median follow-up time was 28.1 months for B+CP and 26.9 

months for Pl+CP.

Data cut-off date Not Reported November 8, 2017

Other details Frequency of outcome

assessment

Not Reported After random assignment, assessments were performed at the 

end of every second treatment cycle until first progression. One 

final tumor scan was performed 4 to 6 weeks after the first 

progression.

Frequency of outcome

assessment

Not Reported Every 6 weeks from day 1 of cycle 1 for the first 48 weeks, and 

every 9 weeks thereafter until the occurrence of disease 

progression.

Frequency of outcome

assessment

Tumour imaging by CT (preferred) or MRI was done at 

baseline, every 6 weeks for the first 18 weeks, then every 

9 weeks through the first 12 months and every 12 weeks 

thereafter.

Every 6 weeks for the first 18 weeks, then every 9 weeks through 

the first 12 months and every 12 weeks thereafter.

Frequency of outcome

assessment

Not Reported After random assignment, assessments were performed at the 

end of every second treatment cycle until first progression. One 

final tumor scan was performed 4 to 6 weeks after the first 

progression.

Frequency of outcome

assessment

Not Reported Radiographic tumour imaging was done at baseline and 

scheduled for every 9 weeks for the first 45 weeks, then every 

12 weeks thereafter.

Frequency of outcome

assessment

Not Reported Tumor imaging was scheduled for weeks 6 and 12, then every 9 

weeks through week 48 and every 12 weeks thereafter.

Every 6 weeks (± 7 days) for the first 48 weeks following cycle 1, 

day 1; after 48 weeks, every 9 weeks (± 7 days).

Age ≥18 years 62.5 years (median, pembrolizumab plus chemotherapy 

group); 63.2 years (median, chemotherapy group)

Exclusion criteria Patients were ineligible if they were receiving systemic 

glucocorticoids (excluding daily glucocorticoid- 

replacement therapy for conditions such as adrenal or 

pituitary insufficiency) or other immunosuppressive 

treatment or if they had untreated brain metastases, 

active autoimmune disease for which they had 

received systemic treatment during the previous 2 years, 

active interstitial lung disease, or a history of pneumonitis 

for which they had received glucocorticoids. 

Patients receiving systemic glucocorticoids or other 

immunosuppressive treatment, untreated brain metastases, 

active autoimmune disease, active interstitial lung disease, or a 

history of pneumonitis.

Subsequent therapies

allowed

YES No crossover to the atezolizumab group was permitted.

Types of errors Description

Significant Error
This error severely affects the accuracy of the data and, if not corrected, could result in 
incorrect conclusions; examples include major miscalculations or incorrect data 
assignments.

Moderate Error
This error is less severe than a significant error but still degrades the quality of the 
data; examples include minor miscalculations or rounding errors that do not greatly 
impact the overall usefulness of the data.

Fabricated Data Data that appears to be invented by the language model rather than based on actual 
information.

Missing or 
Overlooked 

Data

Data that were present in the original source (or reference document) but were either 
missed or not included by the language model.

Accurate The generated output is consistent with the human-provided response.
Superior The generated output is better than the human-provided response.

Error Analysis:

Study Design:

39 Data Types

12 Trials

468 Data Elements

415 correct responses

53 erroneous responses
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• Systematic Literature Reviews (SLRs) play a critical role in synthesizing evidence 

across studies, guiding clinical decisions, and shaping health policy. At the 

heart of this process is data extraction—the detailed task of identifying and 

pulling relevant information from each study, such as study design elements, 

participant characteristics, interventions, and outcomes. This process is 

inherently labor-intensive, requiring expert time, attention to detail, and 

substantial resources, often making it a bottleneck in the systematic review 

process.

• Recent advances in generative artificial intelligence (AI) models, like OpenAI’s 

GPT-4, have opened new pathways for automating such labor-intensive tasks. 

These models can process complex textual information, potentially extracting 

structured data with minimal human intervention. GPT-4o, a model tuned for 

task-specific outputs, has shown promise in zero-shot learning, where it can 

understand and respond to new data requests without explicit prior training on 

the specific task.

• This study aims to assess the capabilities of GPT-4o in performing detailed data 

extraction from clinical trial publications. By focusing on metastatic non-small 

cell lung cancer (NSCLC) studies, we examine whether GPT-4o can accurately 

identify and retrieve complex study design elements, often requiring nuanced 

contextual understanding. The potential for using GPT-4o in SLRs is significant, as 

it could streamline data extraction processes, saving researchers time and 

resources while maintaining high levels of accuracy.

INTRODUCTION

• Data Source Selection: We used a sample of 12 clinical trial publications 

focused on metastatic non-small cell lung cancer (NSCLC) interventions. 

Each publication had previously extracted and quality-checked 

information to serve as a baseline for assessing GPT-4o’s performance.

• Data Entry and Template Definition: We identified 39 data entries across 

various study design elements, including participant criteria, intervention 

specifics, and outcomes, resulting in a total of 468 individual data points. 

These data points were organized in a standardized extraction template 

for consistency.

• Text Conversion and Prompt Preparation: Using Python scripts, we 

converted the publications from PDF to text format. This allowed us to 

process the content efficiently and integrate it with predefined prompts. 

Each prompt contained detailed instructions specifying the type and 

format of data entries to be extracted, providing GPT-4o with clear 

expectations for the task.

• API Integration and Data Processing: The processed text, along with the 

data extraction prompt, was submitted to GPT-4o via an API hosted on 

Azure. The model's output was automatically structured into the data 

extraction template to ensure consistency and ease of comparison with 

the manual extraction.

• Accuracy Assessment: Extracted data from GPT-4o were compared with 

manually extracted data entries. Discrepancies were categorized into four 

types—significant errors, minor errors, fabricated data, and partially missing 

data—to analyze areas of strength and limitations.

• Error Analysis and Contextual Complexity: We conducted a focused 

analysis of GPT-4o’s errors, particularly on data entries requiring complex 

contextual understanding (e.g., subgroup analyses, therapeutic 

protocols). This analysis provided insights into the types of information GPT-

4o finds challenging to interpret accurately.

• Efficiency Measurement: Finally, we recorded the time taken by GPT-4o to 

extract data elements per publication and calculated the average 

extraction time. This metric was then compared to manual extraction 

times to evaluate the model’s efficiency gains.

METHODS

This study aims to assess GPT-4o's effectiveness in automating data extraction for 

SLRs. Key objectives include:

• Accuracy Assessment: Measure GPT-4o’s precision in extracting study design 

elements from clinical trials.

• Strengths and Limitations: Identify areas where GPT-4o performs well or 

encounters challenges due to data complexity.

• Efficiency Gains: Compare time savings achieved with GPT-4o versus manual 

extraction.

• Future Applications: Explore how AI-driven extraction can streamline SLRs and 

support scalable data processing in clinical research.

OBJECTIVES

RESULTS

GPT-4o displayed promising accuracy and efficiency in automating data extraction for SLRs, with the following key 

findings:

• Overall Accuracy:

• Achieved an 88.7% accuracy rate, successfully extracting 415 out of 468 data elements.

• Demonstrated strong capability in accurately processing structured data with minimal human intervention.

• In 37 instances, GPT-4o provided more detailed information than the manual extraction process, illustrating its zero-

shot learning potential.

• Added value by inferring details that were sometimes overlooked in manual extraction, potentially enhancing data 

quality in SLRs.

• Error Analysis: A total of 53 errors were observed, categorized as follows:

• Significant Errors (15): Misinterpretations impacting data integrity, where GPT-4o misunderstood specific data 

elements or contexts.

• Minor Errors (8): Small formatting or wording inconsistencies that did not affect overall accuracy.

• Fabricated Data (6): Instances where GPT-4o generated data not present in the source, indicating over-

generalization.

• Partially Missing Data (24): Missing information in responses, often linked to entries requiring complex contextual 

understanding.

• Contextual Complexity and Error Distribution: Errors clustered in fields needing nuanced understanding (e.g., subgroup 

analyses), indicating limits in handling context-heavy data.

• Efficiency: Averaged 27.75 seconds per publication, a notable time savings versus manual extraction.

• SLR Automation Potential: GPT-4o shows significant promise for streamlining SLRs, with efficiency gains and reduced 

workload, though complex data may require further model refinement
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• Systematic literature reviews (SLRs) are now frequently considered the highest standard in the 
hierarchy of evidence. In 2019, approximately 80 SLRs were published daily by the scientific 
community, and this number has likely increased given the upward trend over the past two 
decades.1 

• However, the process of conducting an SLR is both tedious and time-consuming, particularly 
during the screening of potential publications for inclusion. Each abstract must be reviewed by 
two independent reviewers, screening 500 abstracts is estimated to take around 8 hours.2 

• Considering the increasing use of artificial intelligence (AI) and machine learning (ML) in 
scientific research, we previously tested the accuracy of an ML model trained with 100 
human-reviewed publications to assist in the screening process. Our results demonstrated a 
95% accuracy rate, prompting us to explore the performance of an ML model trained entirely 
with AI-generated data, without any human involvement in the screening (ref ABR).

INTRODUCTION

• This study evaluates the effectiveness of AI-generated decisions in training 
machine learning (ML) models for identifying of relevant publications in 
systematic literature reviews (SLRs).

OBJECTIVES

• An SLR on CAR-T therapy for multiple myeloma in Australia retrieved 989 publications from 
Embase and Pubmed.

•  Entering PICOS criteria in the ‘Custom instructions’ section of ChatGPT 3.5 (free browser 
version), we asked the LLM to generate 50 abstracts meeting inclusion criteria and 50 with 
exclusion criteria. The prompt and iterations used to generate included abstracts are shown in 
Figure 1 bellow: 

• Abstracts of around 200 words with narrative results supported by randomly generated 
estimates followed a set structure: introduction, methods, results, and conclusion (see 
example in Figure 2).

• We trained ML models with a set of abstracts to provide a relevance score to the remaining 
publications, organizing them to prioritize the most relevant for inclusion. Four scenarios were 
proposed:

METHODS
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• Our study used ChatGPT3.5 to generate data for training machine learning models, which 

allowed model training to start sooner without requiring large amounts of real data upfront. 

• Combining real data with some AI-generated publications in scenario C yielded better 

outcomes compared to analyzing publications in random order. Adding AI-generated 

publications helped balance the data, resulting in a more accurate model. 

• Interestingly, we found that a completely made-up dataset could be effectively used to 

achieve good results even before beginning the screening process (scenario D). 

• These findings suggest machine learning could serve as a second reviewer in systematic 

literature reviews, improving efficiency while preserving accuracy and rigor by keeping one 

human reviewer involved.

Limitations

• Generating abstracts with ChatGPT remains time consuming and needs the human in the 

loop to verify the quality of the abstracts. 

• 4 iterations were needed along the process to generate the 50 abstracts with ChatGPT. 

Additionally, ChatGPT tends to get tired, and we had to generate the abstracts per batches of 

10. When requesting a higher number of abstracts (e.g. 25), ChatGPT started to provide 

much shorter and similar samples. We also had to remind it to vary the numerical estimates 

and the narrative within abstracts. 

CONCLUSIONS

METHODS (CONTINUED…)

• Results of the logistic regression model were plotted on screening progression curves, 
showing the percentage of included publications found versus the percentage of publications 
screened, allowing us to calculate performance based on the Area Under the Curve (AUC). 
The curves from the four scenarios were compared with optimal screening (100%) where 
included publications appear first and manual screening (50%), where publications appear in 
random order (Figure 3).
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Figure 1. Example of prompts and iterations used to obtain the AI-generated abstracts

Inclusion prompt: “Can you generate 10 titles and abstracts meeting the specified inclusion 
criteria using a peer-reviewed journal format, with narrative results supported by randomly 
generated numeral estimates? You can use examples from the web to generate different 
narrative structures incorporating some of the outcomes listed in the instructions.”

Iterations
1# “The abstracts should have the following structure: background, methods, results, 
conclusion”
2# “Can you generate 10 other similar examples of title & abstracts including other criteria 
than the study type”
3# “can you provide 10 other examples” (to get 20 abstracts)
4# “can you provide 10 other similar examples but varying a little bit the outcomes reported 
according to the instructions” (repeat iteration to get 50 abstracts)

Figure 2. Example of one AI-generated abstract

“Title: Immunophenotypic Characteristics Associated with Response to Cilta-cel Therapy in 
Multiple Myeloma: A Retrospective Analysis 

Introduction: This retrospective analysis investigates immunophenotypic characteristics 
associated with response to cilta-cel therapy in multiple myeloma (MM) patients. Methods: 
MM patients treated with cilta-cel underwent immunophenotyping of tumor cells, and 
treatment responses were correlated with baseline characteristics. Results: Patients with high 
expression of B-cell maturation antigen (BCMA) on tumor cells demonstrated higher response 
rates to cilta-cel, with an overall response rate (ORR) of 90% compared to 60% in BCMA-low 
patients. Conclusion: Immunophenotypic profiling may help identify MM patients most likely 
to benefit from cilta-cel therapy, guiding personalized treatment strategies.”

•  Trained with 100 real abstracts randomly selected and annotated by experts

Scenario A: Human decisions 

•  Trained with 100 AI-generated abstracts (50 for inclusion and 50 for exclusion)

Scenario B: AI decisions

•  Trained with 100 real abstracts (scenario A) enriched with 50 AI-generated inclusion 
abstracts

Scenario C: Combined decisions

•  Trained with top 100 real abstracts based on scores from scenario B

Scenario D: AI-derived decisions 

Figure 3. Optimal vs Random screening progress

RESULTS

• Scenario A achieved a performance of 79.51%. Scenario B demonstrated 74.48%. Scenario C 
showed the highest performance, reaching 81.49%. Scenario D achieved 79.86% (see Figures 
4 to 7). 

• Scenario C identified 80% of the included publications by screening only 50% of the total set, 
outperforming scenarios A and D, which required screening 54% and 59% of the publications, 
respectively. Scenario B needed to screen 69% to identify 80% of the included publications.



Abstract No.

• A brief background (4-5 bullet points)

INTRODUCTION

• The objective of the study (mainly one bullet point)

OBJECTIVES

• A detailed description of study methodology (good to provide a 

pictorial presentation)

• If it is a targeted review or a systematic review, the databases 

searched, dates, and an associated figure of SLR/TLR methodology

METHODS

• The reference list generated using Endnote or Zotero

• If the references are more than 10 or 15, a note stating “References 

available upon request”

REFERENCES

DISCLOSURES
XX and YY are employees of Amaris Consulting, which received professional fees from ZZ Pharmaceutical Development and Commercialization, Inc. for the study and has also received fees for projects outside the present study. BB is an 

employee of ZZ Pharmaceutical Development and Commercialization, Inc. 

• Conclusions

CONCLUSIONS

RESULTS

• Results

Presented at: Conference Name, Conference Date, City, Country

Abstract Title

Authors

Author Affiliations


	Slide 1
	Slide 2: Backup
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

