A systematic review of clinical efficacy and safety data in penta-refractory multiple myeloma: findings indicate the challenges for HTA submission

Author names: Worsley C.,^a Bianco M.,^b Noble-Longster J.,^a Prentice E.,^a Prowse A.,^a Cooper C.,^c Strickson A.^a Affiliations: aTolley Health Economics Ltd., Buxton, UK; bMenarini Group, Florence, Italy; c Independent researcher, London, UK

Presented at: ISPOR Europe 2023; 12-15 November 2023; Copenhagen, Denmark

Background/Introduction

- Penta-refractory multiple myeloma (PR-MM) describes disease that is refractory to two proteosome inhibitors (Pls), two immunomodulatory drugs (IMiDs), and an anti-CD38 monoclonal antibody (mAb).
- Patients with PR-MM have poor prognosis and represent a high unmet need due to the limited treatment options.^{1,2}
- To permit reimbursement of novel treatments for PR-MM via European HTA, clinical evidence is required to assess the relative clinical effectiveness versus current standard of care (SoC).
- Relative clinical effectiveness is usually estimated through indirect treatment comparisons (ITCs) that require baseline characteristics and time to event data, i.e., progression-free survival (PFS) and overall survival (OS), in the form of medians and Kaplan-Meier (KM) curves, for both the novel treatment and current SoC.

Objective

 To assess how the currently available clinical evidence in PR-MM meets evidence requirements for HTA of novel treatments.

Methods

- A systematic review was conducted to identify interventional and observational clinical evidence for 29 treatments used in Europe to treat relapsed and/ or refractory multiple myeloma (RRMM) (PROSPERO: CRD42023397589).
- Database and grey literature searching were performed in February 2023, according to Cochrane Guidance, and reported according to PRISMA/ PRISMA-S.
- Records were screened by two researchers independently, against a predefined PICOS (**Table 1**).
- Following screening, a data hierarchy assessment was performed to:
- Identify the highest form of evidence available for each RRMM intervention (e.g., non-RCTs were only included in the evidence synthesis if RCT data were not available, and observational data only included in evidence synthesis if RCT and non-RCT data were not available);
- Ensure studies reporting inclusion of PR-MM participants (≥10) were represented.

Table 1 PICOS criteria

Eligibility criteria	Inclusion criteria
Population	Adults (≥18 years) with RRMM with ≥1 prior line of therapy
Interventions	Belamaf; BORT mono; BSC ^a ; CCT ^a ; Cilta-cel; DARA mono; DKd; DPd; DRd; DVd; ElotPd; ElotRd; Ide-cel; IsaKd; IsaPd; IxaRd; Kd; KRd; Melfd; PanoVd; PCycd; Pd; PVd; Rd; Sd; SVd; TEC; Vd; VenVd
Comparators	Trials that include a comparator of any type (including but not limited to the interventions listed above), including placebo, or trials with no comparator
Outcomes	 Survival and response: BOR, CBR, DoR, EFS, ORR, OS, PFS, ToT, TTNT, TTP, TTR Safety and tolerability: TEAEs, TEAES leading to discontinuation/ dose reduction, TRAEs, serious/ severe TEAEs or TRAEs, deaths HRQoL: EQ-5D, EORTC QLQ-C30, EORTC QLQ-MY20, EORTC QLQ-CIPN20, FACT-G, FACT-MM
Study design and publication types	 RCTs Single-arm non-RCTs Open-label extension trials Retrospective and prospective observational studies Peer review publications Abstracts and conference presentations Guidelines Trial protocols Systematic reviews HTA/ regulatory guidance documents Horizon scanning documents
Limits	 No date limits applied, except for conference abstracts (2021 - 2023) No language restrictions^b

a Trials of BSC and CCT were only eligible in a PR-MM population b Records were translated to judge eligibility. Where this was not possible, records are detailed in the report

Results

- In total, 948 records were eligible for inclusion, including 81 prospective, phase 2 or 3 interventional clinical trials (37 RCTs, 2 randomised non-inferiority trials, and 42 non-RCTs), and >100 observational studies reported across 223 records (Figure 1).
- Following the data hierarchy assessment, 35 of the eligible studies (23 RCTs, 8 non-RCTs and 4 observational studies) were taken forward to evidence synthesis, providing clinical evidence for 27 of the eligible interventions listed in the PICOS, with the addition of real-world (RW) SoC (a PICOS refinement actioned due to the paucity of clinical evidence in PR-MM).
- While early RRMM therapies were tested in RCTs, later line therapies (4L+) were evidenced by single-arm or singleassignment multi-cohort studies.
- A total of six interventional non-RCTs and four RW observational studies reporting inclusion

of patients with PR-MM were identified by the systematic review (Table 2).

- The ITT populations of these ten studies were triple-class refractory (TCR) or triple-class exposed (TCE) MM patients; the STORM trial of Sd had the largest proportion of PR-MM patients.
- Data reporting for PR-MM was heterogenous across the ten studies (Table 2):
- Baseline characteristic data for PR-MM patients were reported in one non-RCT and two observational studies, only;

ORR data for PR-MM patients were available

- for the majority of the identified studies; PFS and OS data for PR-MM patients were
- reported only in observational studies of RW SoC;
- Safety data were not reported separately for PR-MM patients in any of the identified studies.

Figure 1: PRISMA diagram

Databases searched: MEDLINE (MEDALL); Embase; Cochrane: CDSR; Cochrane CENTRAL; CRD database DARE; CRD database HTA; CRD database NHS EED. Trial registers searched: clinicaltrials.gov; ICTRP; EUCTR. Websites searched: NICE; SMC; NIHRIO tech briefings; EMA; MHRA; TLV; NIPH; DTC; FIMEA; NCPE; RIZIV-INAMI; ZIN.

Conferences searched: Embase; CPCI-S; ASCO; ASH; BSH; EHA; EMN; ESMO.

Table 2: Overview of the ten studies reporting PR-MM clinical evidence (February 2023)

Study information								Data reported for PR-MM						
Trial name/ ID	Study design	Primary endpoint	Intervention	N of participants		Median prior lines, n (range)		D I	ODD	PFS		OS		6.6.
				ITT (definition)	PR-MM (%)	ITT	PR-MM	Baseline	ORR	Median	KM	Median	KM	Safety
STORM (Part 2) 3,4	Ph2b single-arm	ORR by IRC	Sd	122 (TCR, penta-exposed)	83 (68)	7 (3-18)	8 (4-18)	•	~	×	×	×	×	×
DREAMM-2 (licensed dose) 5,6	Ph2 single-arm	ORR	Belamaf	97 (≥3 prior lines, refractory to a Pl and IMiD, and refractory and/ or intolerant to anti-CD38 mAb)	41 (42.3)	7 (3-21)	NR	×	~	×	×	×	×	×
MajesTEC-1 (Cohort A) 7,8	Ph2a single-arm cohorts	ORR by IRC	TEC mono	165 (≥3 prior lines and TCE)	50 (30.3)	5 (2-14)	NR	×	~	×	×	×	×	×
CARTITUDE-1 9,10	Ph1b/2 single-arm	ORR by IRC	Cilta-cel	97 (≥3 prior lines, refractory to a PI and IMiD, and TCE)	4 (42)	6 (3-18)	NR	×	~	×	×	×	×	×
CARTITUDE-2 (Cohort C) 11	Ph2 single-arm cohorts	MRD-negativity	Cilta-cel	20 (Quad exposed to PI, IMiD, anti-CD38 mAb, and BsAb)	11 (55)	8 (4-13)	NR	×	×	×	×	×	×	×
KarMMa (all enrolled) 12	Ph2 single-arm	ORR by IRC	lde-cel	140 (3 prior lines and TCE)	37 (26.4)	6 (3-16)	NR	×	~	×	×	×	×	×
LocoMMotion 13,14	Prospective observational	ORR by RRC	RW SoC	248 (≥3 prior lines, refractory to a PI and IMiD, and TCE)	44 (17.7)	4 (2-13)	NR	×	~	✓	×	✓	×	×
Kim et al. 2021 15	Retrospective observational	Not specified	RW SoC	120 (TCE)	25 (20.83)	NR	NR	×	~	✓	~	✓	×	×
MAMMOTH 16,17	Retrospective observational	Not specified	RW SoC	275 (Refractory to daratumumab or isatuximab)	70 (25)	4 (1-16)	5 (2-16)	•	~	X a	X a	•	✓	×
Gill et al. 2021 18	Retrospective observational	Not specified	RW SoC	162 (Quad/ penta exposed or refractory)	112 (69)	6 (4-8)	7 (5-9)	•	×	•	~	✓	~	×

a PFS data are reported from MAMMOTH but only for the subgroup of PR-MM reported in Costa et al. 2021 (n=53, who had subsequent treatment with a non-investigational agent)

Conclusions/ Discussion

- There is currently limited efficacy and safety data specific to PR-MM patients, mostly evidenced in single-arm or single-assignment multi-cohort studies on a broader ITT population (i.e. TCE or TCR MM patients).
- This is likely due to limited numbers of PR-MM patients and the lack of approved treatments for this population to permit conduct of RCTs.
- Although ORR is available in most of the identified studies for PR-MM patients, the lack of PFS, OS, and safety data in the same population makes it difficult to draw any conclusion on the relative efficacy of these treatment options for PR-MM patients.
- Moreover, the paucity of PFS and OS medians and KM curves, the heterogenous reporting of baseline demographics, and the limited sample size of PR-MM subgroups, bring challenges in conducting robust ITCs.

- 1. Pozzi S, et al,. Management of Adverse Events and Supportive Therapy in Relapsed/Refractory Multiple Myeloma. Cancers (Basel). 2021; 13(19).
- 2. Robak P, et al,. Drug resistance in multiple myeloma. Cancer Treatment Reviews. 2018. 3. Chari A, et al,. Oral Selinexor-Dexamethasone for Triple-Class Refractory Multiple Myeloma. New England Journal of Medicine. 2019; 381(8): 727-738 4. EMA. 005127: Selinexor (Nexpovio). Summary of Product Characteristics. 2022.
- 5. Lonial S, et al,. Longer term outcomes with single-agent belantamab mafodotin in patients with relapsed or refractory multiple myeloma: 13-month follow-up from the pivotal DREAMM-2 study. Cancer. 2021; 127(22): 4198-4212. 6. EMA. 004935: Blenrep (Belantamab). Summary of Product Characteristics, 2022. 7. Moreau P, et al., Teclistamab in Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2022; 387(6): 495-505.
- 8. EMA. 005865: Teclistamab (Tecvayli). Summary of Product Characteristics. 2022. 9. Berdeja JG, et al,. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet. 2021; 10. Jakubowiak A, et al,. Efficacy and Safety of Ciltacabtagene Autoleucel in Patients With Relapsed/Refractory Multiple Myeloma: CARTITUDE-1 Subgroup Analysis. Blood. 2021; 138(Suppl 1): 3938-3938.

18. Gill SK, et al,. Inferior outcomes of patients with quad and penta-refractory multiple myeloma (MM) compared to those of patients who have been quad and penta exposed. Blood. 2021; 138 (SUPPL 1): 4742

- 11. Cohen AD, et al,. Efficacy and safety of cilta-cel in patients with progressive multiple myeloma after exposure to other BCMA-targeting agents. Blood. 2023; 141(3): 219-230. 12. EMA. 004662: Idecabtagene vicleucel (Abecma). Summary of Product Characteristics. 2022. 13. Mateos MV, et al,. LocoMMotion: a prospective, non-interventional, multinational study of real-life current standards of care in patients with relapsed and/or refractory multiple myeloma. Leukemia. 2022; 36(5): 1371-1376.
- 14. Einsele H, et al., P958: Real-life current standard of care in patients with relapsed/refractory multiple myeloma: subgroup analyses from the LOCOMMOTION study. Hemasphere. 2022; 6(Suppl). 15. Kim C, et al., Outcomes of triple-class (proteasome inhibitor, immunomodulator, CD38 monoclonal antibody) exposed relapsed or refractory multiple myeloma (RRMM) in United States (US) real-world practice. Blood. 2021; 138 (SUPPL 1): 3042. 16. Gandhi UH, et al,. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia. 2019; 33(9): 2266-2275. 17. Costa LJ, et al,. Efficacy of treatments for patients with triple-class refractory (TCR) multiple myeloma (MM): Benchmark for new agents utilizing real-world data (RWD). Blood. 2021; 138(SUPPL 1): 3786.

This research was funded by Menarini-Stemline Ltd.

Belamaf, belantamab mafodotin; BORT mono, bortezomib monotherapy; BsAb, bispecific antibody; BOR, best overall response; BSC, best supportive care; CBR, clinical benefit rate; CCT, conventional chemotherapy; **Cilta-cel**, ciltacabtagene autoleucel; **CSRs**, clinical study reports; **DARA**, daratumumab + carfilzomib + dexamethasone; **DoR**, duration of response; **DPd**, daratumumab + pomalidomide + dexamethasone; DRd, daratumumab + lenalidomide + dexamethasone; DVd, daratumumab + bortezomib + dexamethasone; EFS, event free survival; ElotPd, elotuzumab + pomalidomide + dexamethasone; ElotRd, elotuzumab + lenalidomide + dexamethasone; HRQoL, health-related quality of life; HTA, Health Technology Assessment; Ide-cel, idecabtagene autoleucel; IMiD, immunomodulatory drug; IRC, independent review committee; IsaKd, isatuximab + carfilzomib + dexamethasone; IsaPd, isatuximab + pomalidomide + dexamethasone; ITC, indirect treatment comparison; ITT, intention-to-treat; IxaRd, ixazomib + lenalidomide + dexamethasone; Kd, carfilzomib + dexamethasone; KM, Kaplan-Meier; KRd, carfilzomib + lenalidomide + dexamethasone; mAb, monoclonal antibody; Melfd, melflufen + dexamethasone; MM, multiple myeloma; NR, not reported; ORR, overall response rate; OS, overall survival; PanoVd, panobinostat + bortezomib + dexamethasone; PCycd, pomalidomide + cyclophosphamide + dexamethasone; Pd, pomalidomide + dexamethasone; PFS, progression free survival; PI, proteosome inhibitor; PICOS, Population, Interventions, Comparators, Outcomes, Study design; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement; PR-MM, penta-refractory multiple myeloma; PVd, pomalidomide + bortezomib + dexamethasone; RCT, randomised controlled trial; Rd, lenalidomide + dexamethasone; RRMM, relapsed and/ or refractory multiple myeloma; RRC, response review committee; RW, real world; Sd, selinexor + dexamethasone; SoC, standard of care; STEAE, serious/ severe treatment emergent adverse event; SVd, selinexor + bortezomib + dexamethasone; TCE, triple-class exposed; TCR, triple-class refractory; TEAE, treatment emergent adverse event; TEC, teclistamab; ToT, time on treatment; TRAE, treatment; TTNT, time to next treatment; TTP, time to progression; TTR, time to response; Vd, bortezomib + dexamethasone; VenVd, venetoclax + bortezomib + dexamethasone.