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4 Key Elements of a Causal
Health Decision Framework




1. Understanding Nature & Disease

Use causal diagrams (directed acyclic graphs, DAGS) to define
sufficient set of confounders to control for in the analysis

* In ECAs: confounders = prognostic factors
e DAG tells whether an unmeasured confounder is an iIssue or not

« Multiple RWD sources: use one overall DAG to determine joint
set of variables needed for unbiased analysis

« Multiple RWD sources: search “secondary” RWE sources with
comprehensive set of potential confounders to identify important
factors and determine domains (e.g., for biomarkers,
comorbidity)
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2. Design

Develop Target Trial Protocol (including DAG) prior to analysis to avoid
self-inflicted biases

e Two types of target trials:
1) Target RCT for approval (e.g., selected patient population)

2) Target experiment for current decision question (PICOST);
- may differ from the first regarding subgroup, comparator,
outcome, follow-up etc., but also regarding ITT/causal per-protocol

« Multiple RWD sources: perform both types of target trial emulations
using different optimal ECAs

« Multiple RWD sources: if SoC is inconsistent over time, prioritise
RWE sources reflecting contemporary SoC
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3. Analytic Methods (Selection)

* Model specification

— Correctly specified weight model and outcome model

— Consider machine learning methods to select functional forms of these
models (not variables!) as sensitivity analyses

e Appropriate statistical analysis methods
— Baseline: time-independent confounding - traditional methods (regression, propensity score)
— Post-baseline: time-dependent confounding—> g-methods/TMLE

— Time zero bias (e.g. immortal time bias) = consider cloning — censoring — weighting
approach, to be applied to both trial and ECA

« Multiple RWD sources: use influence matrix of confounders to derive
iInformation for imputing unmeasured variables in the ECA
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4. Support Clinical Guidelines and HTA

 Medical decision making is based on long-term consequences
and tradeoffs (benefit-harms-costs)

« Key interest: long-term outcomes beyond follow-up of the trial =
nlan decision-analytic model along with TTE and selection of
RWD sources

- Multiple RWD sources: May inform different parameters

— E.g. treatment-specific progression, disease-state-specific mortality and
quality of life = use decision analytic modeling to link evidence

— Particularly important for public IQWIG
h ealth I nte rve ntl O nS (e . g . Novum: Erste Nutzenbewertung mit unterstiitzender Modellierung

SC ree n I n ) Im Rahmen der vorliegenden Nutzenbewertung hat das |QWiG ein externes Wissenschaftsteam mit
g einer Modellierungsstudie beauftragt. Ziel war es, die Abwagung zwischen Nutzen und Schaden zu

unterstiitzen. Expertinnen und Experten der Privatuniversitat UMIT Tirol haben daher Daten aus
verschiedenen Quellen zusammengefiihrt und Vorhersagen auch iiber den Zeitraum hinaus getroffen,
der durch die bislang vorliegenden Studien abgedeckt wird.
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How Can We Use Multiple ECAS/RWD Sources?

e Use only the best ECA, matching the trial arm best
— Simple and transparent

 Combine multiple ECAs
— Increase power
— “Dilute” known and unknown biases related to one of them

 Use one ECA to derive a causal prediction rule to “expute”
unmeasured variables with their predictors in ECA 2
— Purposeful data synthesis

e Define a hierarchy on using ECA 1, ECA2, ECA 3 etc.
— Increases success rate

« Combination of the above ...
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Self-inflicted

Self-inflicted

Self-inflicted
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HEALTH POLICY AMALYSIS

Categories of common ECA critigues.

Generalizability

SoC inconsistent over time

ECA nongeneralizable to dinical
practice

Mitigation of confounding

Unmeasured confounding

Unjustified confounders

Maie comparison

Treatment practices have

changed over time, and thus, the

generalizability of the external
control group is questionable,

ECA patient population was

derived from outside the country

of interest, ECA patient
population and market
authorization did not match, or
other differences in ECA
population compared with
clinical practice.

Allimportant known confounders

were not available in the data
and/or were not included in the
adjustment analysis.

Confounders used in adjusting
were not justified—no rationale
provided regarding why the
variable was considered a
confounder.

Mo adjustment for confounders
was executed (eg, propensity
score matching).
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Self-Inflicted Biases in RWE Studies

HEALTH FOLICY AMALYEIS

Categories of common ECA critigues.

Other

Selection bias

Incorrect adjusting methods

Inconsistent outcomes
definitions

Data loss/insufficiency

ECA indicates external control arm; RWD, real-world data; SoC, standard of care.

Individuals or groups in a study
differ systematically from the
population of interest leading to a
systematic errarin an association
or outcome. Includes differences
related to start of follow-up time
(eg, immortal time bias).

Incorrect adjustment methods
were used,

Outcome variables were defined
differently in the clinical trial vs
RWD.

Due to matching, the power to
detect effect was reduced or
substantial missing data
impacted results.
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Jaksa A et al. Comparison of 7 Oncology External
Control Arm Case Studies: Critiques From Regulatory

and HTA Agencies, Health Policy Analysis 2022



Target Trial Emulation to Avoid Self-Inflicted Biases
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Original Investigation | Statistics and Research Methods

Reporting of Observational Studies Explicitly Aiming
to Emulate Randomized Trials

A Systematic Review
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Introduction

Analyses of observational (nonexperimental) data can be used to estimate the causal effect of
interventions when randomized clinical trials are unavailable or infeasible. Bias in observational

analyses may be limited by conceptualizing them as attempts to emulate target trials, ie, hypothetical
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randomized trials that would answer causal questions of interest.'> Hernan and Robins* have
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Analysis of Self-Inflicted Biases;
2nd-Line Ovarian Cancer Treatment

s
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Analytic Strategies

Reference Case

1. “Crude Cox”

Without interaction of time and LOT2

2. “Adjusted . Cox”
Without interaction of time and LOT2

Treated vs. Untreated Person Time
3. "Crude time-var. Cox”
4. "Adjusted time-var. Cox”

Trial Emulation
7. "Partially emulated trial" (only strategiges)
8. “Fully emulated trial" (strategies, population)

Target Trial Approach
5. "Target trial PP"
6. "Target trial causal PP" (IPCW)

Immediate vs

Immediate vs.

Delayed

0
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1 1.5
Hazard ratio (HR) with 95%CI
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Increasing Application of Target Trial Emulation

Figure 2. Number of Explicit Emulations of a Target Trial Included in Review Published per Year
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Hansford HJ et al., JAMA Network Open. 2023
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2809945

Published under https://creativecommons.org/licenses/by/4.0/
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NICE describes target
trial emulation in methods

guidance (June 2022)

www.nice.org.uk/corporate/ecd9
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Questions? Contact me:

€) @uweSiebert9 uwe.siebert@umit-tirol.at
) uwe-siebert9 Web: www.htads.org
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