
INTRODUCTION & OBJECTIVE
• Meta-analysis (MA) plays a crucial role in health economic and outcomes research. Random effects (RE) 

models in MA allow for heterogeneity in treatment effects between studies.
• In a Bayesian framework, prior beliefs are assigned to model parameters, including the between-study 

heterogeneity, often using non-informative priors.1

• Previous research2 explored the use of different priors for the heterogeneity parameter on MA results using 
WinBUGS3 (Gibbs sampling).

• Hamiltonian Monte Carlo (HMC) sampling, implemented in Stan4, is used increasingly more often in recent 
years and should be more efficient than Gibbs sampling.5 

OBJECTIVES
• The aim of this study was to replicate Lambert et al. (2005)2 instead using HMC sampling.
• Further, the study aimed to expand previous research by investigating performance of additional priors on 

the between-study heterogeneity parameter (i.e., an informative prior and improper flat prior), and the 
use of non-centred model parameterization.

• Finally, the study sought to explore model fit under RE models (for each prior investigated) and compare 
with that for fixed effect (FE) models.

METHODS

Model
• Three meta-analysis models were fitted:

 − An RE model with centred parameterization, as used for example in NICE technical support documents:1

	 yi ∼ Ν(μi, si 
2)	 μi ∼	Ν(θ, τ 

2)

where yi and si are the observed log-odds ratio and its standard error for study i, μi is the modelled 
log-odds ratio, τ is the between-study standard deviation (SD) and θ is the pooled log-odds ratio.
 − An RE model with non-centred parameterization:5

	 yi ∼ Ν(θ	+	τμi, si 
2)	 μi ∼	Ν(0,1)

 − An FE model: 
yi ∼ Ν(θ,	si 

2)

• Models were implemented in Stan.4 Four chains with 2000 iterations (1000 warmup) each were sampled, 
with the target average acceptance probability set to 0.98.

• An uninformative prior was placed on the pooled log-odds ratio: θ	∼ Ν(0,100).
• Fourteen priors for the between-study SD, varying in distribution and level of information, were tested 

(Table 1).
 − Prior 0 is an improper flat prior.
 − Prior 13 is the empirical Bayes6 prior.
 − Prior 14 is the informative prior suggested by Turner et al.7 for a pharmacological vs placebo comparison 

and a subjective outcome.

Table 1. Between-study SD priors

𝝉𝝉 ∼ UUnniiffoorrmm(𝟎𝟎,∞) 8. 1
𝜏𝜏!
∼ Pareto 1, 0.25

𝟏𝟏
𝝉𝝉𝟐𝟐
∼ GGaammmmaa 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟏𝟏, 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟏𝟏 9. 𝝉𝝉 ∼ UUnniiffoorrmm 𝟎𝟎, 𝟏𝟏𝟎𝟎𝟎𝟎

𝟏𝟏
𝝉𝝉𝟐𝟐
∼ GGaammmmaa 𝟎𝟎. 𝟏𝟏, 𝟎𝟎. 𝟏𝟏 10. 𝜏𝜏 ∼ Uniform 0, 2

log 𝜏𝜏! ∼ Uniform(−10, 10) 11. 𝝉𝝉 ∼ 𝑵𝑵 𝟎𝟎, 𝟏𝟏𝟎𝟎𝟎𝟎 ; 𝝉𝝉 > 𝟎𝟎

log 𝜏𝜏! ∼ Uniform(−10, 1.386) 12. 𝝉𝝉 ∼ 𝑵𝑵 𝟎𝟎, 𝟏𝟏 ; 𝝉𝝉 > 𝟎𝟎

𝝉𝝉𝟐𝟐 ∼ UUnniiffoorrmm ⁄𝟏𝟏 𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎 , 𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎 13. 𝝉𝝉 ∼ LLooggLLooggiissttiicc 𝑺𝑺𝟎𝟎 ; 𝑺𝑺𝟎𝟎 = ⁄𝑲𝑲 ∑𝒔𝒔𝒊𝒊%𝟐𝟐

𝜏𝜏! ∼ Uniform ⁄1 1000 , 4 14. 𝝉𝝉𝟐𝟐 ∼ LLooggNNoorrmmaall −𝟐𝟐. 𝟏𝟏𝟏𝟏, 𝟏𝟏. 𝟓𝟓𝟓𝟓 ; 𝝉𝝉 > 𝟎𝟎

𝟏𝟏
𝝉𝝉𝟐𝟐
∼ PPaarreettoo 𝟏𝟏, 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟏𝟏

Note: Lambert et al. (2005) used priors 1 to 13.2 κ is the number of studies.

The same case study and simulation study setup as in Lambert et al. (2005) were used.2

Case study
• Models were first fitted on data from five studies comparing the effects of short course versus long course 

antibiotics for acute otitis media.8

Simulation study
• One thousand simulated dichotomous outcome datasets, with differing true between-study SD and number 

of studies, were evaluated.
 −  A random study effect was drawn from a normal distribution with mean zero, and a varied SD across 

three scenarios (0.001, 0.3, or 0.8).
 − The placebo log-odds, log-odds ratio and the random study effect were summed to obtain the odds ratio 

of the treatment arm, and the number of events is drawn from a binomial distribution. Scenarios with 5, 
10 and 30 studies were evaluated, with 100 to 500 patients in each of the two study arms.

• Results were compared by assessing the bias, coverage, deviance information criterion (DIC), convergence 
(based on R-hats and Monte Carlo standard errors) and divergent transitions (an HMC diagnostic indicating 
Markov chain Monte Carlo estimators may be invalid and biased8).
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RESULTS

Case study
• The case study demonstrated that priors with zero density at plausible values results in divergent 

transitions (Figure 1) and may therefore lead to biased results.9

• For most priors, the non-centred parametrization decreased the number of divergent transitions.

Figure 1. Divergent transitions as percentage of samples per prior and parameterization.
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Simulation study
• Based on the observations in the case study, the non-centred parametrization and priors with no or very 

few divergent transitions were used in the simulation study.
• Figure 2 presents pairwise comparisons of between-study heterogeneity priors for the five-study scenario, 

illustrating the impact on the SD of the pooled log-odds ratio.
 − Within each pairwise comparison, dots (replications) which lie around the diagonal indicate similar 

results for the two priors being compared. 
 − Conversely, dots which are consistently above (or below) the diagonal indicate a higher (or lower) SD of 

the pooled log-odds ratio for the row prior versus column prior in the comparison, i.e., more (or less) 
uncertainty in the treatment effect estimate under the row prior.

 − For example, in the pairwise comparison of informative prior 14 versus flat prior 0 (upper right subplot), 
there is decreased uncertainty in the treatment effect for prior 14 (dots are consistently above 
the diagonal).

• Among simulation scenarios, RE models with a gamma prior on precision (1), an empirical Bayes prior (13) 
and an informative prior on variance (14) were most likely to be favoured over FE models (lowest DIC).

• Convergence issues were more prominent when using the improper flat prior (0), the non-informative 
normal prior on SD (11), the non-informative priors on SD and variance (5, 9) and the non-informative 
Pareto prior on precision (7), especially in scenarios with fewer studies and higher true SD.

• The non-informative uniform prior on variance (5) still resulted in many divergent transitions, especially in 
scenarios with a true SD of 0.001.

Figure 2. Scatter plot matrix comparing all selected between-study SD prior distributions for the 
five‑study scenario with a between‑study SD of 0.3, displaying the posterior SD of the pooled 
log-odds ratio. Each point represents a simulation replication.

CONCLUSIONS
• Findings are very similar to results presented by Lambert et al. (2005)2, despite the different 

parameterization and (more efficient5) sampling method.
• Selection of an appropriate between-study heterogeneity prior is crucial as it impacts the posterior 

treatment effect, particularly when dealing with a low number of studies.
• Caution must be exercised to avoid bias when using informative priors.
• In future studies, adopting non-centred model parameterization as standard practice is advisable over 

centred parameterization.
• HMC diagnostics, such as divergent transitions, are helpful and show that priors with zero density at 

plausible values should be avoided.
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