Cost-Effectiveness Analysis of Fracture Prevention with 25-Hydroxyvitamin D (25(OH)D) Screening Among the Population over 65 Years Old in China

LIU Yuping^{1,2}, XUAN Jianwei³, LIU Youren^{1,2}, LU Xianzhong⁴, ZHANG Yue⁴, WU Powei⁵, LI Wan³

¹ Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China

² Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China

³ Health Economic Research Institute, School of Pharmacy, Sun Yat-sen University, Guangzhou, China

⁴ Roche Diagnostics (Shanghai) Limited, Shanghai, China

⁵ Shanghai Centennial Scientific Co. Ltd., Shanghai, China

BACKGROUND

 Vitamin D deficiency is associated with an increased risk of fractures, particularly in the elderly population. Serum 25(OH)D is currently regarded as the most reliable indicator of vitamin D status. Supplementation with vitamin D and calcium has the potential to decrease fracture risk in individuals with vitamin D deficiency.

OBJECTIVE

 The objective of this study is to evaluate the cost-effectiveness of the 25(OH)D screening strategy compared to non-screening for the prevention of fracture from the societal perspective among the population over 65 years old in China.

RESULTS

Base case

- Compared to the non-screening strategy, the screening strategy provides 0.014 incremental QALY.
- The lifetime costs per person were lower for the screening strategy at ¥13,154 compared with ¥13,351 for the non-screening strategy, which is a saving of ¥197 with ICER of ¥-14,281.5 per QALY gained.

Table 1Base case results

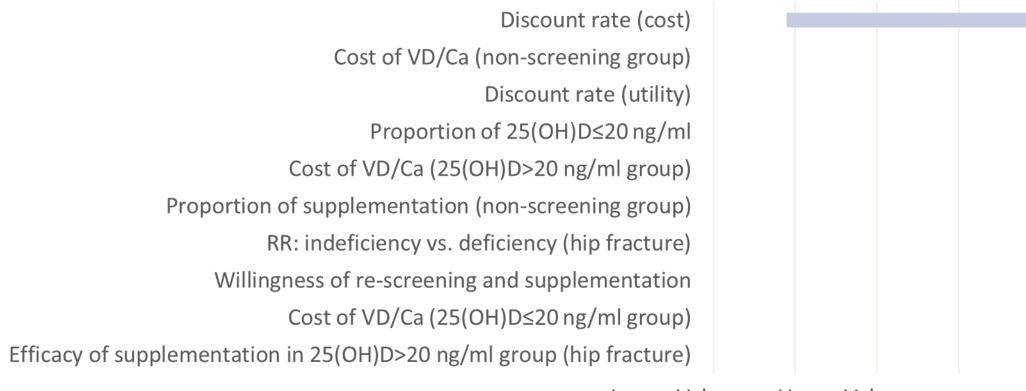
METHOD

- A decision tree and Markov model were combined to estimate lifetime costs and qualityadjusted life years (QALYs) for screening and non-screening strategies (with or without vitamin D and calcium supplementation).
- The effectiveness of vitamin D and calcium supplementation in reducing fracture risk was derived from the published meta-analysis ^[1-4].
- The proportion of the population who would take the supplements and the dosage of supplement was obtained through in-depth interviews.

Strategy		Dosage of supplement		
Scrooping	25(OH)D>20 ng/ml	800IU VD + 600mg Ca /day		
Screening	25(OH)D≤20 ng/ml	1000IU VD + 600mg Ca /day		
Non-screening		800IU VD + 600mg Ca /day		

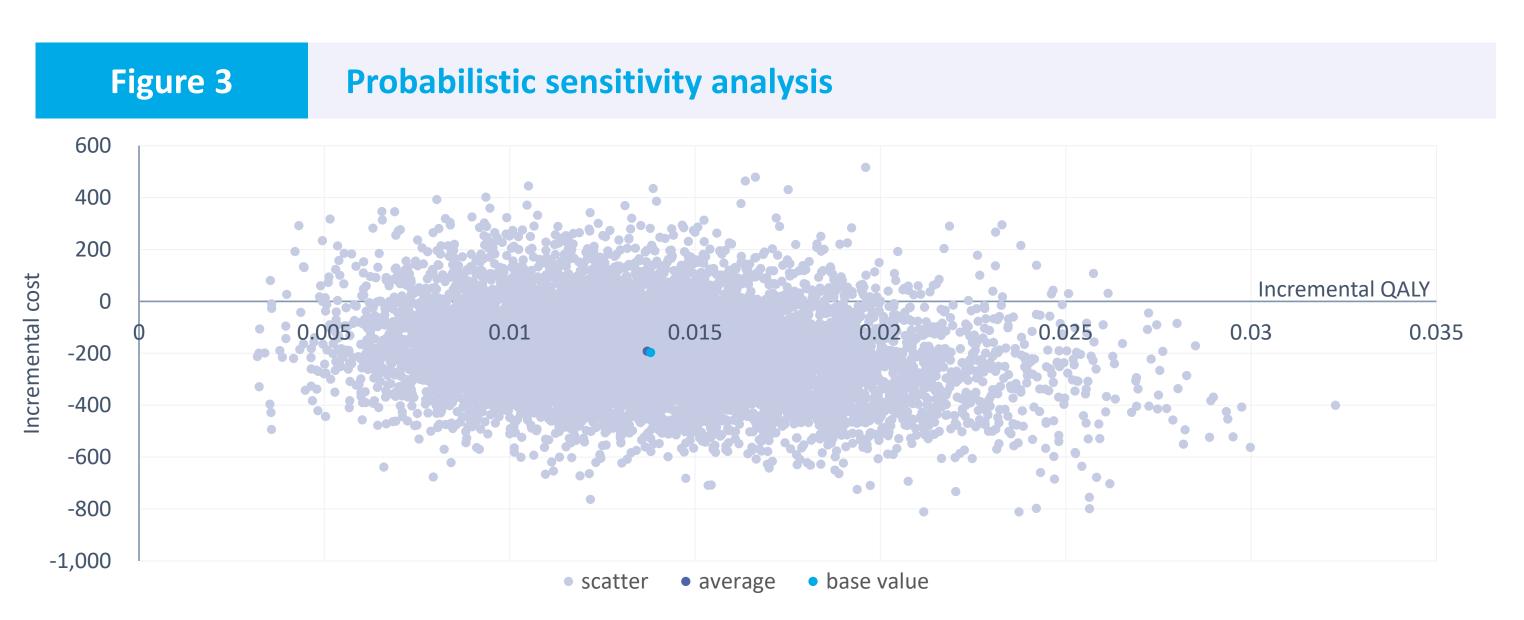
- Epidemiologic, clinical, and cost data were collected from published literature or public databases ^[5-9].
- Uncertainties regarding key parameters were evaluated using deterministic and probabilistic sensitivity analyses.
- Scenario analysis was conducted to evaluate the cost-effectiveness of screening for different population or different screening strategies.

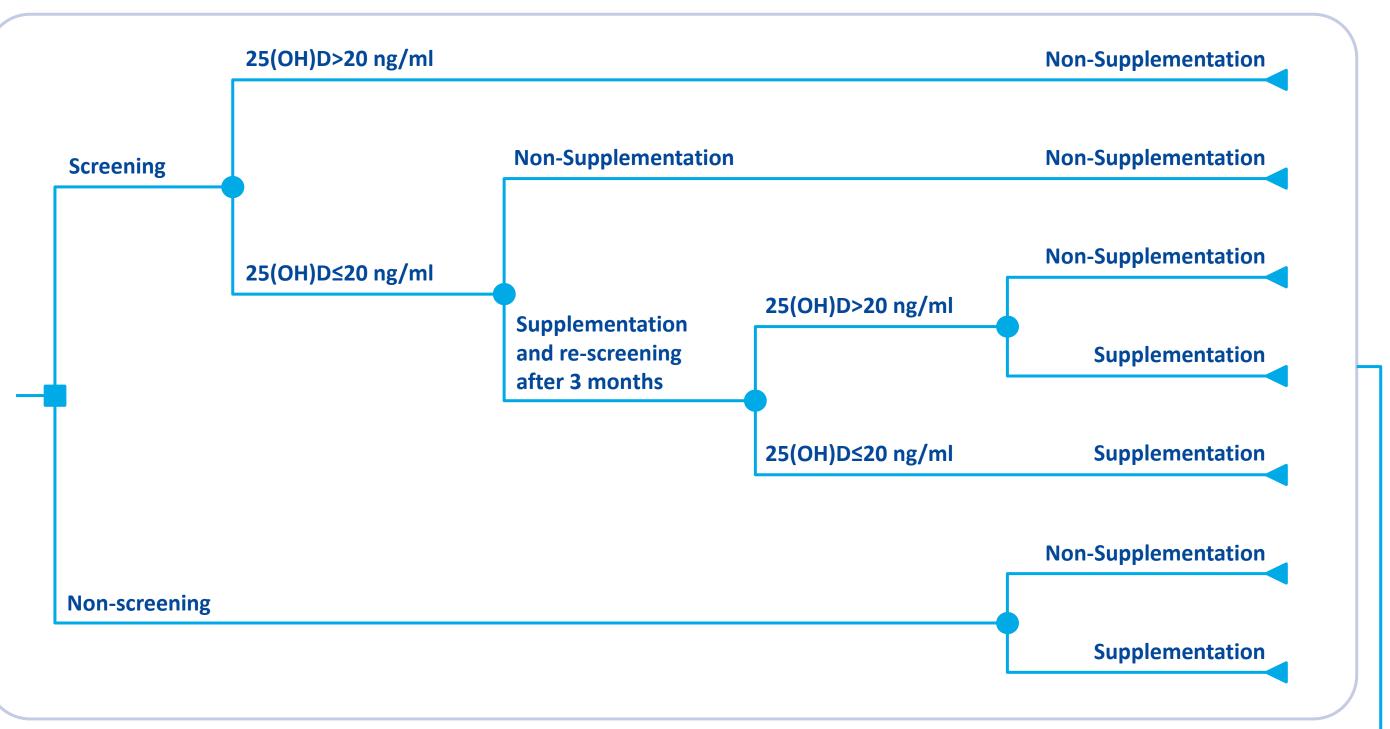
Figure 1Model structure

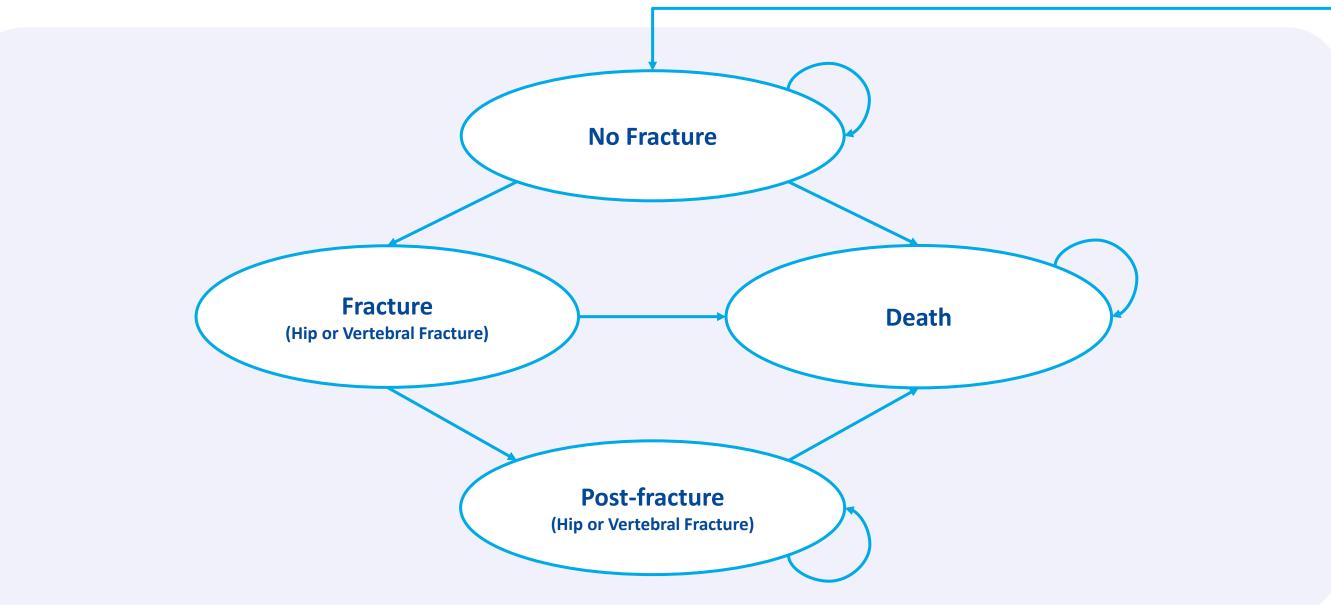

Screening	¥13,154	7.842	V 107	0.014	V 14 201 E
Non-screening	¥13,351	7.828	¥-197	0.014	¥-14,281.5

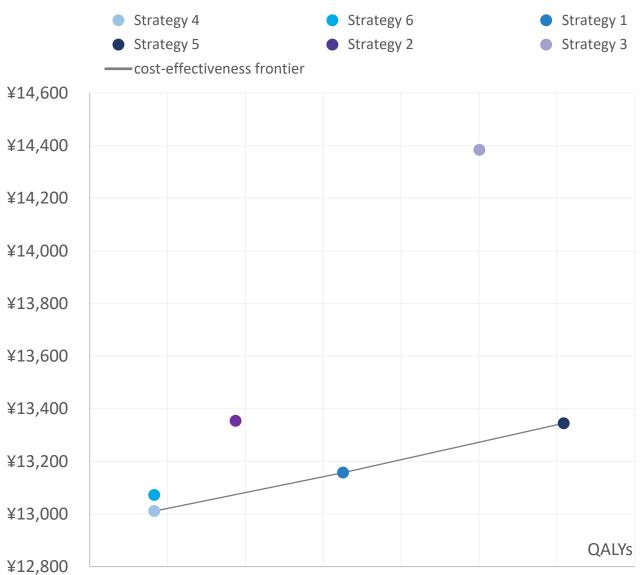
Sensitivity analyses

• Both one-way and probabilistic sensitivity analysis confirmed the robustness of the results.


Figure 2One-way sensitivity analysis


-45,000 -40,000 -35,000 -30,000 -25,000 -20,000 -15,000 -10,000 -5,000




Scenario 1. Women over 50 years old

 The lifetime costs per person were lower for the screening strategy at ¥13,792.2 compared with ¥13,854.9 for the non-screening strategy, which is a saving of ¥62.7 with ICER of ¥-6,455.77 per QALY gained.

Scenario 2. Different screening strategies

• When the WTP is one-time GDP per capita, compare to strategy 4, the strategy 1, 5 is costeffective.

	No.	Strategy	Cost	QALYs	ICER	
	4	Non screening and no supplementation	¥13,010.91	7.818		
	6	Screening, then the deficient all take no supplementation	¥13,071.73	7.818	dominated	
	1	Screening, then with/without supplementation	¥13,157.06	7.843	¥6,028.83	
	5	Screening, then the deficient all take supplementation	¥13,344.59	7.871	¥6,613.90	
	2	No screening, then with/without supplementation	¥13,354.23	7.829	dominated	
	2	No screening, but all take	¥14,384.18	7.860	dominated	

Key Assumptions

- Accuracy of screening is 100%.
- In the screening group, patients need to be rescreened after 3 months of supplementation to detect changes in 25(OH)D levels.
- The supplementary dose for the non-screening group was equivalent to the screening group's minimal dose.
- The adherence of patients who takes supplements is 80% ^[10].
- Regardless of supplement dose, supplementation lowers the risk of fractures by the same percentage.
- The 25(OH)D level will be maintained throughout life when the deficient population take no supplementation.
- Patients only experience one fracture event in lifetime, instead of multiple fracture events.

³ supplementation

CONCLUSIONS

Compared to the non-screening strategy, population-based 25(OH)D screening was
projected to be cost-saving, with increased QALY gains for primary prevention of fractures
among the population over 65 years old in China.

REFERENCES

- meta-analysis. The Lancet, 370(9588), 657–666. https://doi.org/10.1016/s0140-6736(07)61342-7 [3] Geng, N., Yang, N., Ding, Q., Feng, W. (2022). Meta-analysis of the Efficacy and Safety of Calcium and Vitamin D3 in the prevention of Osteoporotic Fracturein the Elderly. Chinese Journal of Drug Evaluation. 39(4): 291– 303. DOI:10.20043/j.cnki.MPM.202112196
- [4] Bai, K., Dong, H., Liu, L., She, X., Liu, C., Yu, M., Zhen, L., Lin, H., Ke, P., Huang, X., Wu, X., Zhang, Q., & Zhao, B. (2023). Serum 25-hydroxyvitamin D status of a large Chinese population from 30 provinces by LC–MS/MS measurement for consecutive 3 years: differences by age, sex, season and province. European Journal of Nutrition, 62(3), 1503–1516. https://doi.org/10.1007/s00394-023-03094-z
- [5] Yu, X., Cai, D., Zhang, Q., Xiao, L. (2022). Disease burden and trend change of fracture of hip in China,1990—2019. Modern Preventive Medicine, 49(13): 2305-2311+2316. DOI:10.20043/j.cnki.MPM.202112196
 [6] Bow, C., Cheung, E. F., Cheung, C., Xiao, S., Loong, C., Soong, C., Tan, K. C. B., Luckey, M. M., Cauley, J. A., Fujiwara, S., & Kung, A. W. C. (2011). Ethnic difference of clinical vertebral fracture risk. Osteoporosis International 23(3), 879–885. https://doi.org/10.1007/s00198-011-1627-9
- [7] China population census yearbook 2020. (2020, April). http://www.stats.gov.cn/sj/pcsj/rkpc/7rp/indexch.htm
- [8] Ito, K. (2020). Cost-effectiveness of screening for osteoporosis in older men with a history of falls. JAMA Network Open, 3(12), e2027584. https://doi.org/10.1001/jamanetworkopen.2020.27584
 [9] Li, N., Liu, S., Boonen, A., Van Den Bergh, J., & Hiligsmann, M. (2022). A model-based cost-effectiveness analysis of fracture liaison services in China. Archives of Osteoporosis, 17(1). https://doi.org/10.1007/s11657-022-01170-1
- [10] Lin, S., Li, Y. (2020). The treatment rate and compliance of anti-osteoporosis drugs. Chin J Osteoporos, 26(3): 439-444.