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Survival modelling in Health Technology Assessment (HTA)

• Accurately extrapolating survival beyond trial follow-up is essential in HTA

• Different survival models can result in drastically different estimates of treatment benefits
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Survival modelling in HTA: Immuno-oncology

• Immuno-oncology is especially affected because survival curves can flatten over time

• “Standard” survival models may not capture this

• “Flexible” survival models (including cure models) may capture the flattening, but are they credible?

Mean survival 
(years)

Control IO Difference

Weibull model 0.77 1.45 0.67

Cure model 2.93 8.43 5.50

• Different models can result in drastically 

different estimates of survival benefit

• This has become a crucial discussion point in 

many appraisals of immuno-oncology 

treatments



Selecting survival models for immunotherapies

• Palmer et al. 2023 present an algorithm for selecting survival models to inform economic evaluations of 

cancer immunotherapies

• The algorithm involves 8 steps and 4 

questions, involving:

⁃ Review of external data

⁃ Assessment of proportional hazards

⁃ Elicitation of expert beliefs

⁃ Consideration of turning points in the hazard 

function and data maturity

⁃ Evaluation of the possibility of cure

⁃ Sensitivity analysis
Palmer S, Borget I, Friede T, Husereau D, Karnon J, Kearns B, et al. A Guide 
to Selecting Flexible Survival Models to Inform Economic Evaluations of 
Cancer Immunotherapies. Value Health. 2023 Feb;26(2):185–92
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Testing the Palmer et al. algorithm

CheckMate 649 compared first line nivolumab plus 

chemotherapy versus chemotherapy alone, in 

patients with advanced gastric, gastro-

oesophageal junction, or oesophageal 

adenocarcinoma

• 12-, 24- and 36-month data-cuts are available

• Pivotal trial in NICE TA 857 

NICE: National Institute for Health and Care Excellence; TA: Technology Appraisal

12-month data-cut

24-month data-cut

36-month data-cut



Testing the Palmer et al. algorithm

Methods

• Applied Palmer et al. algorithm to 12- and 24-month data-cuts from CheckMate 649

• Selected preferred survival models based on our application of the algorithm

• Compared predictions to data observed in the 36-month data-cut 
(concentrating on the Combined Positive Score (CPS) ≥ 5 subgroup)

Aims

• Applicability. How straightforward is the algorithm to apply?

• Model selection. Does the algorithm result in survival models that extrapolate survival accurately?

• Implications for HTA. What impact might the algorithm have on the HTA process and decision making?

• Development. Would the algorithm benefit from any amendments?



Application of the Palmer et al. algorithm

Steps 1-8. Determining candidate survival models

1. Review external data [Evidence from a range of RCTs, real world data from the UK, US, Canada and the Netherlands]

2. Assess proportional hazards [Hazard plots from CheckMate 649, external information on treatment effects of IOs]

3. Elicit expert beliefs [Informed by all expert beliefs documented in the appraisal documents for NICE TA857]

4. Consider turning points in the hazard function 

5. Consider the need for flexible survival modelling 

6. Evaluate the possibility of a cure 

7. Consider the plausibility and justifiability of a cure assumption 

8. Selection of potentially plausible models…

Informed by 

Steps 1-3



Application of the Palmer et al. algorithm

Steps 1-8. Determining candidate survival models

8. Selection of potentially plausible models…

— Based on responses to all previous steps

Findings: Plausibility criteria

Issue Chemotherapy Nivolumab + chemotherapy

Plausible 

expectations 

for survival 

proportions

4 years: 3-7%

10 years: 1-4%

May approximately double 

survival that is observed with 

chemotherapy.

20 years: approximately 3%

Expectations 

around hazards

Initial increase followed by decrease. 

In both treatment groups hazards will converge towards 

background rates in the long-term (5+ years), but will 

always remain above background mortality levels.

Age-related increase in the very long-term in longest-

term survivors. 

Treatment 

effect waning

Uncertain, but in the small percent who live beyond a few 

years, hazards will equalise
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Findings: Candidate models 

• Log normal models 

• Log-logistic models 

• Generalised gamma models 

• Flexible parametric models

• Mixture cure models 

• Non-mixture cure models

→All models to include background mortality 

and SMR uplift

→All models to be fit independently to 

treatment groups

SMR: Standardised Mortality Ratio



Results: Models fit to 12-month data-cut

Compared to Plausibility Criteria

• Only log-logistic and non-mixture cure models with a 15-year cure time-point met our plausibility criteria

• FPMs under-predicted survival at 10 years, and mixture cure models and non-mixture cure models with 

earlier cure time-points (7-10 years) over-predicted survival compared to our plausibility criteria

AIC: Akaike Information Criterion; CPS: Combined Positive Score; SMR: Standardised Mortality Ratio; FPM: Flexible Parametric Model; df: degrees of freedom

Model Mean 

survival (50 

years)

Survival % AIC Cure %

Year 4 Year 10 Year 20

12-month data-cut, CPS≥5

1. Log-logistic, SMR=2.5 Chemo 1.44 6.1% 1.0% 0.1% 829 N/A

Nivo+chemo 1.99 11.1% 2.0% 0.3% 906 N/A

2. Non-mixture cure (FPM, 4df), 

SMR=2.5, 15-year boundary knot

Chemo 1.97 7.4% 3.6% 1.8% 829 5.7%

Nivo+chemo 3.28 15.3% 8.3% 4.1% 909 13.1%

• Log-logistic models predict survival at low end of plausible range

• Non-mixture cure models predict survival at top end of plausible 

range



Results: Models fit to 12-month data-cut

Compared to 36-month data

• Models seem pessimistic: especially the log-logistic models

— For nivolumab + chemo neither model produced survival predictions within the confidence intervals of the observed data at year 5

NMC: Non-mixture cure; BK: Boundary Knot



Results: Models fit to 24-month data-cut

• Did not change much!

• The same models produced extrapolations that fell within the plausible range (log-logistic and non-mixture cure)

• FPMs still under-predicted survival and mixture cure models still seemingly over-predicted survival

• The log-logistic models seemed very pessimistic compared to the 36-month data-cut

• The non-mixture cure model seemed pessimistic, but did produce survival predictions that were within the confidence 

intervals of the observed data at year 5 

→So similar results to those for models fitted to the 12-month data-cut, just with slightly improved extrapolations 

(as we would expect)

FPM: Flexible Parametric Model



Conclusions

Applicability 

• The Palmer et al. algorithm was simple to use and offered a systematic procedure for model selection 

Model selection 

• Allowed us to successfully narrow down the list of plausible models

• Resulted in models that provided credible extrapolations (though possibly pessimistic?)

Implications for HTA

• The algorithm “front-loads” the work, before models are fitted

• Should reduce disagreement around model choice; reduced need for additional modelling during appraisals

Development 

• The Palmer et al. algorithm may benefit from some modifications

• The algorithm does not require that plausibility criteria are explicitly defined

• This provides an additional mechanism to ensure preferred models are selected in an unbiased manner 



Thank you
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