
Providing Consultancy &

Research in Health Economics

Developing a Checklist to Increase

Efficiency of VBA Code

Medland S1, Davies H1, Butler K1

1 York Health Economics Consortium, Enterprise House, Innovation Way, University of York, York, YO10 5NQ

▪ The average length of the new code was 89.7% shorter than the original code

(Figure 1).

▪ The average run time for the new code was 78.2% shorter than the original code

(Figure 2).

▪ While the original code was running, the VBA continually referred to the worksheet

to identify the value of each hard-coded range and to paste each result as the

scenario was run. Use of “activesheet”, “activecell”, and “.select” added an

unnecessary interaction between the code and the workbook and slowed the model.

Using defined variables also decreases interaction between the worksheet and the

code and, therefore, run time. Other ways to reduce interaction include avoiding

“.select”, “.copy” and “.pastespecial”, switching off worksheet updates and only

calculating the model when necessary.

▪ Utilising loops, rather than writing bespoke code for each task, shortened the code

• length. If a task is repeated in the code, custom functions and subroutines can be

used within a module and cell ranges from the workbook can be assigned to a

defined variable. Option explicit should always be used to ensure all variables are

defined to prevent errors.

▪ The choice of variable type is important: strings and doubles take up less storage

space than variants [3].

▪ After development of the VBA code checklist, calculations were set to automatic

and the screen updating was not switched off, so the worksheet updated as the

code ran. Switching calculations to manual, only calculating the model when

necessary and switching off worksheet updates contributed to a shortened run time.

Several health technology assessment bodies specify a maximum economic model run

time in their pharmacoeconomic guidelines [1, 2]. However, as models become larger

and more complex, the run time increases. Hence, it is increasingly important that

models are run efficiently. For models built in Microsoft Excel, Visual Basic for

Applications (VBA) code is frequently used to run sensitivity analyses and calculate

complex model data. Efficient writing of VBA code is associated with efficient running of

the model.

This research aims to give advice on the writing of bespoke and efficient VBA code.

BACKGROUND AND OBJECTIVES

sarah.medland@york.ac.uk

Telephone: +44 1904 322278

Website: www.yhec.co.uk

http://tinyurl.com/yhec-facebook

http://twitter.com/YHEC1

http://tinyurl.com/YHEC-LinkedIn

RESULTS

The increasing size and complexity of economic models [4] requires efficient use of

VBA code. The use of the principals outlined in this poster can reduce the time taken to

conduct and adapt an analysis and facilitate review by increasing readability and

reducing code length.

Table 1: VBA code checklist

Figure 2: The change in average DSA model run

time after actioning the VBA code

checklist

CONCLUSION

CONTACT US

1. CADTH Reimbursement Review: Economic Requirements Checklist. Canadian Agency for Drugs and

Technologies in Health (CADTH). March 2022. 2. PBAC guidelines: Section 3A.9 Uncertainty Analysis.

Pharmaceutical Benefits Advisory Committee (PBAC). September 2016. 3. Visual basic for applications: Data type

summary. Microsoft. 2023. 4. Poirrier, J.E., et al. Up to new limits: the number of petaflops necessary for realistic

health economic models. 2023.

REFERENCES

MSR128

A model with a slow deterministic sensitivity analysis (DSA) was reviewed by a

modeller proficient in VBA code. Areas where the code efficiency could be improved

were identified and used to develop a corresponding checklist (Table 1). The checklist

was subsequently used to rewrite the code, whilst maintaining an identical output. The

length of code and the average run time of the original and new code were compared.

METHODS

Check to be conducted Why is this important?

Limiting interaction between VBA and Microsoft Excel

Does the code refer to a particular model cell

or range? Repeated navigation to the value

can increase interaction and slow the model.

The cell value or range should be assigned to a defined

variable. The VBA can make changes to / use the defined

variable and, later, this can be output in the model as

appropriate.

Are the following codes used?

▪ “.select”

▪ “.copy”

▪ “.pastespecial”

Use of these codes should be avoided as it can cause

repeated navigation in the spreadsheet.

These can be replaced by named ranges and defined

variables, which can complete the same actions in a

shorter time.

Are there references to: “activesheet” or

“activecell”?

These can cause errors if the macro is run from a different

worksheet. The worksheet or range should be referred to

specifically. For example, Sheets(“SheetName”) and

Range(“RangeName”).

Has “Application.WorksheetFunction” been

used?

Only VBA functions should be used where possible.

Are calculations switched to manual while

the code is running?

This prevents unnecessary, time-consuming calculations

in the background.

To set calculations to manual, use: Application.Calculation

= xlCalculationManual

Are worksheet updates switched off while

the code is running?

This prevents the worksheet updating unnecessarily when

the VBA code makes changes.

To stop the worksheet updating as the code runs, use:

Application.ScreenUpdating = False

Are the results outputted line-by-line? A defined variable can be used as a results array in VBA

code. This gathers all the results and outputs them in a

specific range once the analysis is complete.

Reducing code length and time for reviews or updates

Is the same task applied to a set of values? Writing bespoke code for each value is timely and results

in long code that is difficult to review and update.

For loops can be utilised so that the same piece of code is

run over each value in the set. This will help to shorten the

code length, thereby facilitating review and shortening the

time taken to adapt the model in the future.

Is a specific task repeated several times

across the same or different subroutines?

For example, collecting the results from the

model.

Create a custom public function or subroutine to be used

within a module. This helps to shorten the code length

and, therefore, facilitate review.

Have ranges been hardcoded in the VBA

code? Avoid hardcoding ranges into the

VBA.

If a row or column is added in the VBA, the range of

interest will shift, and can cause errors in the workbook.

Avoid hardcoding the ranges. Instead, cell ranges used in

the VBA should be named appropriately to allow for ease

of updates and increase transparency.

Is option explicit defined at the top of the

module? Write “option explicit” at the top of

the module.

Option explicit should always be used to force the

modeller to define all variables. This helps to prevent

spelling errors in variable names causing issues in the

code.

Formatting

What variable types have been used? The choice of variable type is important.

Strings and doubles should be used instead of variants of

arrays because they take up less storage space in the

VBA (10 bytes and 8 bytes, respectively, compared to 16

bytes) [3].

Have Microsoft Excel-specific features been

used in the front-end?

Conditional formatting and other Microsoft Excel functions,

including offset functions and what-if analyses, should be

avoided.

Have modules been named appropriately? This helps to facilitate review

Have appropriate comments been added to

the code?

This helps to facilitate review

Run time of

original code

Run time of

new code

50.50 seconds

11.01 seconds

Figure 1: The change in average code length after

actioning the VBA code checklist

Length of

original code

Length of

new code

2,372 lines

244 lines

http://www.google.co.uk/url?sa=i&source=images&cd=&cad=rja&docid=raGsVA-SpCSrQM&tbnid=T8uxHOAoROVbGM:&ved=0CAgQjRwwAA&url=http://increaserss.com/why-you-need-to-be-on-linkedin/&ei=PmwgUuSZOaaX0AXShIGwCA&psig=AFQjCNGz5VCZMNOsRPsV_ALYDho_4iy9dA&ust=1377942975002656

	Slide 1

