From unpersonalised to personalized breast cancer follow-up in clinical practice in the Netherlands:
will artificial intelligence make a difference?

Madelon Voets!?, Jeroen Veltman3#4, Kees Slump®, Erik Koffijberg!, Sabine Siesling!?

174

e . o . o ~ 3.5K breast cancer o
. Artificial intelligence (Al) In medical imaging Is a rapidly growing field patients
and promises to improve the personalisation of care o
. Evidence supporting comparative effectiveness is lackin Data sources: Netherlands = (
pp g p g Cancer Reg|Stry & (122;/;) - (3 days) (?%m - RMR. 273
. Growing numbers of breast cancer patients need follow-up Electronic Health Records 2 6o b aays) | RUlEsondy O
508 12774 1420 (2245) 98
. . . . - . . 230 davs (375,da 1 davs 214 days
. Personalisation of follow-up is a major factor in improving outcomes N y % NG
. . . i . . . = Start 2713 — (343j ic;ys)
. Benefit of Al in personalised follow-up compared to usual care is 26k+ Imaging activities
unclear

R-Mammogram

15% 89 @
(7 days) ()
//' %

(240 days)

309
(235 days)

20 Years timeframe

AIM: to describe the current unpersonalised variation in daily clinical

practice using real world data
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Result 2. Sequential process map. For 80% of patients, mammogram is the first follow-up
Imaging activity. On average, repeat ultrasound followed a mammogram the next day.

Result 1. Sankey flow diagram describing the sequence of follow-up activities during six years of follow-up and the repeat (interval) diagnostics between
annual visits. Mammography is the dominant imaging modality. Within 40 days of the first imaging activity, 20% of patients are recalled for a repeat diagnostic
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