Efficacy of Lecanemab in Patients With Early Alzheimer's Disease: **CO166 A Systematic Review and Meta-Analysis**

Barinder Singh¹, Gagandeep Kaur², Sumeet Attri², Akanksha Sharma²

¹Pharmacoevidence, London, UK; ²Pharmacoevidence, Mohali, India

Lecanemab demonstrated a decrease in cognitive and functional decline compared to placebo for the treatment of early-stage AD over 18-months period. Future meta-analysis studies should also include the safety and tolerability outcomes. Further, longer-term studies are needed to evaluate the effectiveness and safety of lecanemab for the treatment of early-stage AD

-Background

- Alzheimer's disease (AD) is a progressive neurodegenerative condition that primarily affects the cerebral cortex and hippocampus region of the brain. It typically begins in the frontal and temporal lobes and gradually spreads to the other regions at varying rates among individuals¹
- AD is characterized by the accumulation of beta-amyloid (Aβ) protein in the brain's extracellular spaces and blood vessel walls, as well as the aggregation of tau protein into neurofibrillary tangles within the neurons¹

<u></u> R	esults (Cont'd)		
Figure 2: PRIS	SMA diagram for the screening process		
ication	Records identified during database searching (n=215) EMBASE (n=200) MEDLINE-in-Process (n=15)		
lentif		Duplicates removed (n=37)	

- The treatment options specifically designed to address Aβ-pathology have recently been available, which aim to significantly diminish the accumulation of aggregated A β plaques, lower the levels of soluble A β , and decrease the production of A β species prone to aggregation^{2, 3}
- Lecanemab is a humanized monoclonal antibody which binds to soluble Aß protofibrils with high affinity to treat early AD⁴

-Objective

The objective of this meta-analysis is to review the clinical evidence for lecanemab in patients with early AD

Methodology

- This review adhered to NICE and PRISMA guidelines for systematic literature reviews (SLRs), following standard methodology with transparent, reproducible, and unbiased approach
- A systematic search of published literature was performed using Embase[®] and MEDLINE[®] from database inception to June 2023 to identify the randomized controlled trials assessing lecanemab in early AD

Table 1: Characteristics of included RCTs

Parameters	Clarity	Study 201
Phase-III		8
Blinding (Double Blind)	\bigcirc	
Global (Multiple countries)	\bigcirc	
CDR-SB	Ø	
ADAS-cog-14	Ø	
ADCOMS	Ø	
Safety	Ø	

CDR-SB: CDR–Sum of Boxes; ADAS-cog14:14-item cognitive subscale of the Alzheimer's Disease Assessment Scale; ADCOMS: Alzheimer's Disease Composite Score

Figure 3: Clinical characteristics of patients across the included studies

Fvidence[®]

Study 201 CLARITY

In the ITT analysis, lecanemab 10 mg biweekly was associated with statistically

- Two independent reviewers performed the screening and data extraction activities, with conflicts resolved by a third independent reviewer
- **Figure 1** presents the pre-defined PICOS criteria for study selection

Figure 1: Prespecified PICOS eligibility criteria for selection of evidence

ADAS-cog-14: Alzheimer's Disease Assessment Scale-Cognitive Subscale ; ADCOMS: Alzheimer's Disease Composite Score; CDR-SB: Clinical Dementia Rating-Sum-of-Boxes ;

- The outcomes of interest included change from baseline in Clinical Dementia Rating-Sum-of-Boxes (CDR-SB), Alzheimer's Disease Composite Score (ADCOMS), and Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog14) at 18 months
 - The meta-analysis was performed using Stata 17 software

- significantly better efficacy vs. placebo in terms of reduction on various scales: CDR-SB (WMD: -0.44, 95%CI: -0.70 to -0.17), ADCOMS (WMD: -0.05, 95%CI: -0.07 to -0.03), and ADAS-Cog14 (WMD: -1.55, 95%CI: -2.30 to -0.79) (Figure 4)
- A sensitivity analysis performed using MMRM, analysis, showed similar results (Figure

Figure 4: Forest plot of meta-analysis of ADCOMS, ADAS-Cog14, and CDR-SB comparing lecanemab vs. placebo at 18 months

Base case analysis (ITT)		Sensitivity analysis (MMRM)	
ADCOMS	WMD (95% CI) Weight (%)	ADCOMS	WMD (95% CI) Weight (%)
Clarity STUDY 201 Overall, DL (I ² = 0.0%, p = 0.909)	-0.05 (-0.07, -0.03) 79.30 -0.05 (-0.09, -0.00) 20.70 -0.05 (-0.07, -0.03) 100.00	Clarity STUDY 201 Overall, DL (I ² = 0.0%, p = 0.785)	-0.05 (-0.07, -0.03) 78.19 -0.06 (-0.10, -0.01) 21.81 -0.05 (-0.07, -0.03) 100.00
1	0	1	0
ADAS-cog14	WMD (95% CI) Weight (%)	ADAS-cog14	WMD (95% CI) Weight (%)
Clarity	-1.44 (-2.27, -0.61) 81.82	Clarity —	-1.44 (-2.27, -0.61) 78.72
STUDY 201	-2.02 (-3.80, -0.27) 18.18	STUDY 201	-2.31 (-3.91, -0.72) 21.28
Overall, DL (l ² = 0.0%, p = 0.559)	-1.55 (-2.30, -0.79) 100.00	Overall, DL (I ² = 0.0%, p = 0.342)	-1.63 (-2.36, -0.89) 100.00
-5	0	-5	0
CDR-SB	WMD (95% Cl) Weight (%)	CDR-SB	WMD (95% CI) Weight (%)
Clarity	-0.45 (-0.67, -0.02) 66.32	Clarity -	-0.45 (-0.67, -0.02) 63.26
STUDY 201	-0.41 (-0.87, 0.04) 33.68	STUDY 201 -	-0.40 (-0.82, 0.03) 36.74
Overall, DL (l ² = 0.0%, p = 0.896)	-0.44 (-0.70, -0.17) 100.00	Overall, DL (I ² = 0.0%, p = 0.843)	-0.43 (-0.69, -0.17) 100.00
-1	0 1	-1 0	1

ADAS-cog14:14-item cognitive subscale of the Alzheimer's Disease Assessment Scale; ADCOMS: Alzheimer's Disease Composite Score; CDR-SB: Clinical Dementia Rating-Sum of Boxes: CI: Confidence interval: DL: DerSimonian and Laird; MMRM: Mixed effects model with repeated measures; WMD: Weighted Mean Difference

Thresholds for the interpretation of I² can be misleading since the importance of inconsistency depends on several factors. A rough guide to interpretation is as follows: **0% to** 40%: might not be important; 30% to 60%: may represent moderate heterogeneity; 50% to 90%: may represent substantial heterogeneity; 75% to 100%: considerable heterogeneity (Cochrane handbook)

(a) **—Results**

- Two double-blind, placebo-controlled, 18-months trials (Study 201, and Clarity) AD) met the inclusion criteria
- The flow of publications through the entire SLR process is depicted in the PRISMA diagram (Figure 2)
- Methodological characteristics: Both the trials were similar in blinding, geography, and the reported outcome types whereas differ in trial phase. Study 201 and Clarity trial was conducted in phase II and III setting, respectively (Table 1)
- **Clinical characteristics:** While the majority of clinical characteristics were similar between both trials, the Clarity trial reported a higher proportion of females and cases of mild dementia due to AD. In contrast, Study 201 exhibited a larger number of patients with mild cognitive impairment due to AD and a global Clinical Dementia Rating (CDR) score of 0.5 (Figure 3)

References

- Masters, C.L., et al. Alzheimer's disease. Nature Reviews Disease Primers. 2015. October; 15056
- 2. Kennedy, M.E, et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer's disease patients. Science translational medicine. 2016; 8(363): 363ra150-363ra150
- 3. Cummings, J.L., et al. Treatment combinations for Alzheimer's disease: current and future pharmacotherapy options. Journal of Alzheimer's disease, 2019; 67(3): 779-794
- 4. Song, C., et al. Immunotherapy for Alzheimer's disease: Targeting β-amyloid and beyond. Translational neurodegeneration. 2022;11(1): 1-7
- 5. McDade, E., et al. Lecanemab in patients with early Alzheimer's disease: Detailed results on biomarker, cognitive, and clinical effects from the randomized and open-label extension of the phase 2 proof-of-concept study. Alzheimer's Research & Therapy. 2022;14(1): 1-17
- 6. Swanson, C.J., et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer's disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimer's research & therapy. 2021;13:1-14
- 7. Van Dyck, C.H., et al. Lecanemab in early Alzheimer's disease. New England Journal of Medicine. 2023;388(1):9-21

Disclosure

Barinder Singh, Gagandeep Kaur, Sumeet Attri, and Akanksha Sharma the authors, declare that they have no conflict of interest

Acknowledgment & Sponsorship AST!

The authors would like to thank Sunil Kumar for his valuable contribution in making this poster a success. The authors conducted this research independently, without any external collaboration

