Cost-consequence of using NGS vs. single-testing in NSCLC patients at diagnosis – Real-world data from a Portuguese hospital

Teixeira, Manuel¹, Soares, Marta², Silva, Ana Sofia^{3,4}, Rangel, Marta³, Gonçalves-Monteiro, Salomé^{3,4}, Vales, Joana^{5,6}, Medeiros, Pedro^{5,6}, Silva, Eduarda⁷, Marques, Diogo⁷, Sousa, Joana⁷, Cunha, Alexandre⁸, Salgado, Catarina⁹, Redondo, Patrícia^{3,4}

¹ Genetics Service, Portuguese Oncology Institute of Porto, Por (IPO Porto), Porto, Porto, Portugal; ⁴ Group of Epidemiology, Results, Economy and Management in Oncology Institute of Porto (IPO Porto), Portugal; ⁶ Porto Comprehensive Cancer Center (Porto.CCC) & RISE@CI-IPOP (Health Research Network), Porto, Portugal; ⁷ MOAI Consulting, Lda; ⁸ Roche Química Farmacêutica, Lda; ⁹ Roche Sistemas de Diagnósticos, Lda.

INTRODUCTION

Lung cancer (LC) is the leading cause of death by cancer in Europe and Portugal^{1,2}. In recent years, treatment innovations, such as therapies targeting specific gene mutations, have been transforming the management of LC, particularly Non-Small Cell Lung Cancer (NSCLC), by **improving the average survival** of patients harbouring specific mutations^{3,4}.

Characterisation of the genomic profile of NSCLC patients is an essential step for defining the best treatment strategy³. Given the large number of approved targeted therapies (TT) for NSCLC, ESMO recommends genetic testing using Next-Generation Sequencing (NGS), as it allows for the investigation of a high number of genes in a short timeframe and at a relatively affordable cost⁵. Despite this, the adoption in clinical practice of NGS for diagnosing NSCLC patients is still very low in Portugal.

Incidence of gene mutations

Figure 2 | Incidence of gene mutations in the PSG and NGS group

The differences in the incidence of mutations in genes EGFR (p=0.176) and ALK (p=0.103) found between the two groups are not statistically significant.

OBJECTIVES

- To evaluate, using real-world patient data, the cost-consequence at diagnosis of using NGS vs. other single-gene testing methods;
- To evaluate the cost-saving potential of performing NGS upfront at diagnosis vs. sequential multi-gene testing for all currently actionable mutations.

METHODS

This was a single-centre cross-sectional study with patients newly diagnosed with NSCLC at IPO Porto (IPOP), which evaluated the real-world use of two different testing strategies at diagnosis: strategy 1, implemented between June 2017 and June 2019, consisting of parallel single-gene testing (PSG) for genes EGFR, ALK and ROS1; strategy 2, implemented starting May 2019, consisting of NGS testing with a 17-gene panel (Figure 1).

This study was divided into 5 stages:

1. Process mapping: Exploratory interviews with clinicians, management, genetic technicians and operational support staff;

2. Cost determination: Identification of the costs associated with each resource (human and material) used in each technique, using time-driven activity-based costing (TDABC);

3. Data collection and analysis: Collection of relevant data (demographic, clinical and genetic test results) from the IPOP patient database and statistical analysis using RStudio. A significance level of p<0.05 was considered statistically significant;

Incidence of actionable gene mutations

Figure 3 | Incidence of actionable gene mutations in the PSG and NGS group

Cost-consequence analysis

Techniques performed	Cost of consumables (€)	Cost of human resources (€)	Total cost (€)	
PSG	208.51 €	59.65 €	268.16 €	
DNA extraction	9.48 €	5.80 €	15.28€	
COBAS® RT-PCR	47.73€	16.14 €	63.87 €	
FISH (ALK+ROS1)	151.30 €	37.71 €	189.01 €	
NGS group	535.67 €	29.71 €	565.38 €	
DNA extraction	9.48 €	5.80 €	15.28€	
NGS	526.19€	23.91 €	550.10€	

In practice, the mean cost per patient in the PSG group was 255.59 €, while in the NGS group was **576.93 €** per patient.

EE677

Figure 5 I Percentage of actionable patients

4. Cost-consequence analysis of NGS: Evaluation of the cost-consequence of NGS at diagnosis vs. PSG, by comparing outcomes such as the total number of mutations identified and actionable mutations;

5. Cost-saving potential of NGS: Evaluation of the cost-saving potential of NGS vs. sequential multi-gene (SMG) testing - strategy 3 - for all currently actionable genes (with TT approved by EMA) (Figure 1), using the NGS NSCLC cohort population as a case study.

RESULTS

A total of **955 NSCLC patients were identified** that met the inclusion criteria: **486 in the PSG** group and 469 in the NGS group.

Table 1 I Demogra	aphic and clin	ical characte	Table 2 I Total and mean tests performed			
Characteristics	PSG group N=486	NGS group N=469	P-value	Techniques	N tosts performed	Ме
	N (%)	N (%)		performed	Na tests performed	а
Sex			0.612		N	
Male	321 (66%)	318 (68%)			Mean [95% CI]	
Female	165 (34%)	151 (32%)		PSG Group		
Age at diagnosis			0.751	FISH – ALK	453 0 93 [0 90 0 96]	
Mean (95% CI)	65.9 [65.0, 66.8]	66.1 [65.2, 67.0]		FISH – ROS1	446	
Disease stage			0.067		0.92 [0.89, 0.95]	
Stage I	76 (16%)	93 (20%)		COBAS® RT-PCR – EGFR	496 1.02 [1.00, 1.04]	
Stage II	30 (6%)	30 (6%)				
Stage III	95 (19%)	64 (14%)		NGS group		
Stage IV	277 (57%)	278 (59%)		COBAS® RT-PCR – EGFR	2	
No info	8 (2%)	4 (1%)			0.00 [0.00, 0.01]	
Type of NSCLC			0.284	NGS – 17 genes	478	
Squamous cell carcinoma	6 (1%)	11 (2%)		FISH – MET	1.02 [1.01, 1.03] 1	
Adenocarcinoma	441 (91%)	413 (88%)			0.00 [0.00, 0.01]	
Other NSCLC	39 (8%)	45 (10%)		Sanger sequencing – MET	- 1 0.00 [0.00, 0.01]	

per patient, —

an time to get result (days)

Mean

[95% CI]

[9,9]

[9.9]

[8,9]

3

[NA, 22]

13

[13, 14]

[NA, NA]

[NA, NA]

The differences in the theoretical and real cost per patient result from the fact that, in reality, clinical practice may differ slightly from strategies 1 and 2.

Cost-saving analysis

To simulate strategy 3 – SMG testing, the cohort of patients in the NGS group was considered. Based on this hypothetical strategy, each patient in the SMG group would do, on average, 3.2 tests [3.1, 3.3], with the average cost being 614.39 € [587.99, 640.80 €].

LIMITATIONS

- The cost of each technique is specific to IPOP and could potentially not be representative, hindering the generalizability of the cost-consequence analysis;
- A gene was only considered to be actionable if there were TT approved by EMA, meaning that ERBB2 mutations, which have TT approved by FDA and are currently used off-label in some Portuguese institutions, were not considered actionable, despite being present in

13 patients in the NGS group (2.77%).

TAKE HOME MESSAGES

The average cost per patient of performing NGS at diagnosis is superior to the PSG group - 576.93 \in vs. 255.59 \in . However, it allowed for the identification of more mutated patients - 66% (309) vs. 23% (114) and patients potentially eligible for TT - 41% (190) vs. 23% (114);

- Given that TT have better clinical outcomes, knowing the mutation status for all actionable mutations is essential to optimise treatment decision;
- Sequential testing for all currently known actionable mutations (strategy 3 SMG testing) is, on average, 37.5 € more expensive per patient than NGS. The cost-saving potential of NGS is only thought to increase in the future.

ISPOR Europe 2023, Copenhagen, Denmark

References

¹ OECD/European Union. Health at a Glance: Europe 2022; ² Globocan 2020 Portugal; ³ Michelotti A.et al., NSCLC as the Paradigm of Precision Medicine at Its Finest: The Rise of New Druggable Molecular Targets for Advanced Disease. Int J Mol Sci. 2022 Jun 17;23(12):6748; ⁴ Mosele F. et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Annals of Oncology. 2020 Nov;31(11):1491–505.

