Are the hurdles too high for access to gene therapies in the UK? Sideris E¹, Holdgate O², Patel A², Bradley S², Rouse P², Guest S² 'Hoffmann-La Roche, Welwyn Garden City, UK: ²Roche Products Ltd, Welwyn Garden City, UK #### BACKGROUND - Gene therapies have the potential to deliver significant benefit to patients as well as to the National Health Service (NHS) in the UK. - However, access and reimbursement for gene therapies is inherently challenging - Given their one-off nature and high research & development and manufacturing costs, gene therapies are associated with: - o a complex evidence base: - low patient numbers: - o uncertainty around long-term outcomes (in some cases multiple decades); - o variability in patient outcomes; - o issues around affordability and budget impact. ## **OBJECTIVE** To explore whether access to gene therapies in a cost-effectiveness market like the UK is feasible via the standard Health Technology Assessment (HTA) routes or whether additional flexibility in decision making is deemed necessary. ## **METHODS** - We undertook a review of the UK reimbursement decisions for gene therapies over the last 5 years (2018–September 2023) from both the National Institute for Health and Care Excellence (NICE) and the Scottish Medicines Consortium (SMC). - In addition, we utilised a published review of NHS England (NHSE) 'smart deals' from the period 2018– 2022' to identify examples of potentially more complex solutions that have been implemented in terms of pricing and reimbursement. #### RESULTS - Up to September 2023, five gene therapies have been reimbursed in the UK, all of which have benefited from the flexibilities of the NICE Highly Specialised Technology (HST) process and the SMC ultra-orphan process (Table 1). - Importantly, a sixth gene therapy (betibeglogene autotemcel [Zynteglo] for the treatment of patients with transfusion-dependent beta-thalassaemia) was assessed by NICE through the Single Technology Appraisal (STA) route. - This was rejected on the grounds of the clinical trial data being small and insufficient to justify reimbursement, which also led to major uncertainties about the cost effectiveness of the gene therapy. - A published review of NHSE 'smart deals' (2018-2022)¹ revealed most of these were based on interim funding arrangements, population health arrangements and portfolio deals - and not innovative payment mechanisms linked to outcomes (Table 2). - Many of the details on what constitutes each of these a "smart deal" are not available in the public domain, especially with regards to pricing where limited to no information were available. - Some insights are available however from these "smart deals" as summarised in Box 1. # Box 1: 2018–2022 smart deal summary and insights - Eight were linked to interim funding via managed access agreements, including the Cancer Drugs Fund. In the majority of cases, no clarity was provided on whether the commercial arrangement included anything beyond a simple discount. - Five were via direct negotiations with NHSE: specialised clinical commissioning guidance, price negotiated directly with NHSE commercial medicines unit, national procurement process (tender). - Three were NICE HST appraisals with simple discounts being provided - Other "smart deals" included: - o A portfolio deal with Vertex for its cystic fibrosis portfolio; - A population health management agreement between NHSE and Novartis for cholesterol / cardiovascular disease; - o A population health partnership between NHSE and EQRx for cancer drugs. ## CONCLUSIONS - Despite the broad recognition of the innovative and life-changing benefit gene therapies can potentially bring, HTA methods primarily from NICE which have often been criticized for being behind the times when it comes to evaluating non-traditional drugs such as cell and gene therapies – mean that these therapies cannot become available for patients in the UK through the standard assessment routes of NICE and SMC. - Indeed, our analysis demonstrated that all gene therapies which have been recommended within the UK via NICE and SMC required specialised ultra-orphan routes for HTA in combination with confidential commercial agreements. - In the absence of a gene therapy specific HTA route, the assessment via NICE HST and SMC ultraorphan processes are paramount and currently the only viable way to bring these innovations to UK patients. # DISCLOSURES | Table 1. Gene therapies UK reimbursement status | | | | | | | |--|---|---|---|--|--|--| | Gene Therapy | Disease Area | NICE | SMC | | | | | Eladocagene exuparvovec
(Upstaza)
PTC Therapeutics | Aromatic L-amino acid decarboxylase deficiency | HST 26
19 April 2023
Commercial arrangement:
Simple discount PAS, list
price £3,010,451 | Ultra orphan
11 September 2023
Commercial arrangement:
Confidential discount | | | | | Libmeldy
(Atidarsagene autotemcel)
Orchard Therapeutics | Metachromatic
leukodystrophy | HST 18 28 March 2022_ Commercial arrangement: Simple discount PAS, list price £2,875,000 | Ultra orphan
11 April 2022
Commercial arrangement:
Confidential discount | | | | | Zolgensma
(Onasemnogene abeparvovec)
Novartis Gene Therapies | Neuromuscular
SMA Type I | HST 15
07 July 2021
Commercial arrangement:
Simple discount PAS &
MAA (for part of the
population), list price
£1,795,000 | Orphan
08 March 2021
Commercial arrangement:
Confidential discount | | | | | Luxturna
(Voretigene neparvovec)
Novartis | Ophtha
Inherited retinal
dystrophy caused by
confirmed biallelic
RPE65 mutation | HST 11
09 October 2019
Commercial arrangement:
Simple discount PAS, list
price £613,410 | Ultra orphan
10 February 2020
Commercial arrangement:
Confidential discount | | | | | Strimvelis
GSK | Adenosine deaminase
deficiency–severe
combined
Immunodeficiency | HST 7
07 Feb 2018
Commercial arrangement:
No detail available, price
£505,000 | Not assessed in Scotland | | | | | Date | Technology | Therapeutic class | Indication | Manufacturer | |----------------|---|----------------------------|--|--| | September 2018 | Kymriah | CAR-T cell therapy | B cell precursor acute
lymphoblastic
leukaemia | Novartis | | October 2018 | Yescarta | CAR-T cell therapy | Diffuse large B-cell
lymphoma and primary
mediastinal B-cell
lymphoma | Gilead Sciences | | November 2018 | Biosimilar
adalimumab | Monoclonal antibody | Multiple | Abbvie, Amgen,
Biogen, Mylan /
Fujifilm Kyowa
Kirin, Sandoz | | April 2019 | Hepatitis C technologies | Direct acting antivirals | Hepatitis C | Gilead Sciences,
Merck Sharp and
Dohme, Abbvie | | May 2019 | Spinraza | Antisense oligonucleotide | Spinal muscular atrophy | Biogen | | May 2019 | Ocrevus | Monoclonal antibody | Multiple sclerosis | Roche | | September 2019 | Luxturna | Gene therapy | Retinal dystrophy | Novartis | | October 2019 | Orkambi, Symkevi,
Kalydeco | CTFR modulators | Cystic fibrosis | Vertex
Pharmaceuticals | | February 2020 | Ilaris | Monoclonal antibody | Periodic fever syndromes | Novartis | | August 2020 | Kaftrio | CTFR modulator | Cystic fibrosis | Vertex
Pharmaceuticals | | December 2020 | Fetcroja, Zavicefta | Antibiotics | Drug-resistant infections | Shionogi, Pfizer | | January 2021 | Tecartus | CAR-T cell therapy | Relapsed/refractory mantle cell lymphoma | Kite
Pharmaceuticals | | March 2021 | Zolgensma | Gene therapy | Spinal muscular atrophy | Novartis | | April 2021 | PHESGO
(pertuzumab +
trastuzumab) | Monoclonal
antibodies | HER2-positive breast cancer | Roche | | September 2021 | Leqvio | Small interfering RNA | Familial
hypercholesterolaemia | Novartis | | October 2021 | Adakveo | Monoclonal antibody | Sickle cell disease | Novartis | | October 2021 | Oncology pipeline drugs | Miscellaneous | Multiple | EQRx | | November 2021 | Eliquis, Pradaxa,
Xarelto, Lixiana | Direct oral anticoagulants | Atrial fibrillation and stroke prevention | Pfizer, Boehringer
Ingelheim, Bayer,
Daiichi Sankyo | | November 2021 | Evrysdi | mRNA splicing modifier | Spinal muscular atrophy | Roche | | February 2022 | Libmeldy | Gene therapy | Metachromatic
leukodystrophy | Orchard therapeutics | | March 2022 | Darzalex | Monoclonal antibody | Multiple myeloma | Janssen | # REFERENCES PF Media. The UK access environment has been transformed – what are the lessons for pharma and other countries? 2021