Exploring the Relationship between Surrogate and Long-Term Outcomes in Lysosomal Storage Diseases: A Targeted Literature Review

Jagan Mohan Palli¹, Kiran Raygude¹, Marie Fournier², Maria Belen Rodriguez³, Nicole Lyn³, Laurence Pollissard², Fernando Laredo^{4*}, Ruth Pulikottil-Jacob⁵

¹Sanofi, Hyderabad, India; ²Sanofi, Chilly-Mazarin, France; ³Sanofi, Cambridge, MA, USA; ⁴Sanofi, São Paulo, Brazil; ⁵Sanofi, Reading, UK *FL was an employee of Sanofi at the time of study conduct

- Clinical trials in rare diseases frequently rely on surrogate endpoints because of limited sample size, trial design constraints and disease heterogeneity.^{1,2}
- In the United States and European Union, regulatory bodies have allowed use of surrogate endpoints for early drug licencing to address the unmet medical need in the treatment of rare diseases.^{3,4}
- However, the acceptance of surrogate endpoints is frequently challenged by payers;³ therefore, there
 is a growing need to assess the influence of surrogate endpoints on long-term outcomes, until
 evidence for their longer-term effects is available in rare diseases.

Objective

• This targeted literature review (TLR) evaluated the possible relationship between long-term and

 Table 1. Studies reporting association/correlation between surrogate and long-term outcomes

 in FD

Surrogate endpoint	Long-term outcome	Study design	Statistical analysis	Variables assessed	Measure of association	95% CI	<i>p</i> -value	
	HRQoL	Cross-sectional survey ^{a,8}	Linear regression	Physical function ^b	b = -19.06	-	0.02	
				Role physical ^b	b = −23.62	-	0.04	
		Retrospective observational extraction ⁹	Hierarchical linear modelling	Physical function	b = 0.37	-	<0.01	
		Cross-sectional ^{a,10}	Multivariate	EQ-5D index ^c	b = -0.06	-0.22; -0.03	0.03	
			regression	EQVAS ^c	b = -6.79	-14.12; -2.77	0.04	
eGFR	Morbidity ^d	Retrospective observational ^{e,11}	Cox regression	-	HR = 4.57	1.79; 11.73	0.001	
	Renal events ^f	Retrospective (registry data) ¹²	Multivariate Cox regression	-	HR = 5.88	2.73; 12.68	<0.001	
	CV events	Retrospective (registry data) ^{g,12}	Multivariate Cox regression	-	HR = 1.33	1.04; 1.70	0.021	
	CV events ^h	Retrospective analysis of prospectively collected data ¹³	Linear regression	-	HR = 3.59	1.15; 11.18	0.0273	
	Mortality	Retrospective (registry data) ¹⁴	Multivariable	-	HR = 2.22	1.38; 3.57	-	
	CV events ⁹	Retrospective (registry data) ¹²	Multivariate Cox regression	-	HR = 1.57	1.21; 2.05	<0.001	
LVMI	CV morbidity and mortality	Observational, longitudinal, prospective cohort ¹⁵	Multivariable modelling	AF	HR = 1.02	1.01; 1.03	0.02	
				Cardiac death	HR = 1.05	1.02; 1.09	0.000	
Myocardial T1 values	Morbidity	Prospective ¹⁶	Pearson correlation	LVM	r = -0.79	-	<0.0001	
				MWT	<i>r</i> = −0.79			
				Sokolow–Lyon Index	<i>r</i> = −0.54	-		
				MSSI	<i>r</i> = -0.61	-		
				Left atrial volume	r = -0.49	-	<0.0002	

Copies of this poster obtained through Quick Response (QR) Code are for personal use only

surrogate outcomes in lysosomal storage diseases (LSDs) trials, specifically focusing on Fabry disease (FD), Gaucher disease type 3 (GD3) and GM2 gangliosidoses, namely Tay–Sachs and Sandhoff diseases.

Methods

Search strategy and selection criteria

- A comprehensive TLR was conducted using Excerpta Medica Database (EMBASE[®]) and MEDLINE from inception to March 2022 to identify studies linking surrogate endpoints used in clinical trials to long-term outcomes (health-related quality of life [HRQoL], morbidity and mortality) in LSDs of interest.
- Studies evaluating the relationship between surrogate and long-term outcomes in these LSDs were eligible for inclusion. Studies without the relevant population and outcomes were excluded.
- For LSDs with limited evidence on surrogate endpoints, analogous diseases with similar natural history and disease pathway would be explored.

Data extraction and analysis

- Data extracted included study design, statistical methods and results that evaluated a possible relationship between surrogate and long-term outcomes.
- Studies reporting regression coefficient (b), hazard ratio (HR), odds ratio (OR) or chi-square test $\binom{2}{\chi}$ were categorised as 'association', whereas studies reporting Pearson or Spearman correlation coefficient (*r*), were categorised as 'correlation'.

Results

- Overall, 419 studies (FD, number of studies, n = 313; GD3, n = 106) were identified; as no evidence was reported in GM2 gangliosidoses, additional searches were conducted focusing on analogous disease, such as, Pompe disease (n = 110) (Figure 1). There was no evidence on 9-hole peg test (9HPT) and timed 25-foot walk (T25FW) identified in GM2 gangliosides, and its analogous disease, Multiple Sclerosis (MS) (n = 109), was explored where these endpoints have been studied.
- Furthermore, none of the studies met the eligibility criteria for GD3; hence, a subsequent search was conducted on mucopolysaccharidosis type I (MPS I, n = 170) and acid sphingomyelinase deficiency (ASMD, n = 121), which are analogous diseases (Figure 1).

^aKidney disease was defined as reduced eGFR; ^bThe eight scales measured by the short form-36 health survey are physical functioning, role physical, bodily pain, general health, vitality, social functioning, role emotional and mental health; ^cEQ-5D index and EQ VAS are standardised measures of HRQoL; ^dMorbidity was assessed by clinical events, which included neurological, cardiovascular and renal events; ^eChronic kidney disease was defined as eGFR with <60 ml/min/1.73m²; ^fRenal events included dialysis, transplantation and renal failure; ^gCV events included myocardial infarction, left ventricular hypertrophy, heart failure, arrhythmia, conduction abnormality and cardiac surgery; ^hCV events included arrhythmia, atrial fibrillation, implantable cardioverter device or pacemaker implantation and myocardial infarction.

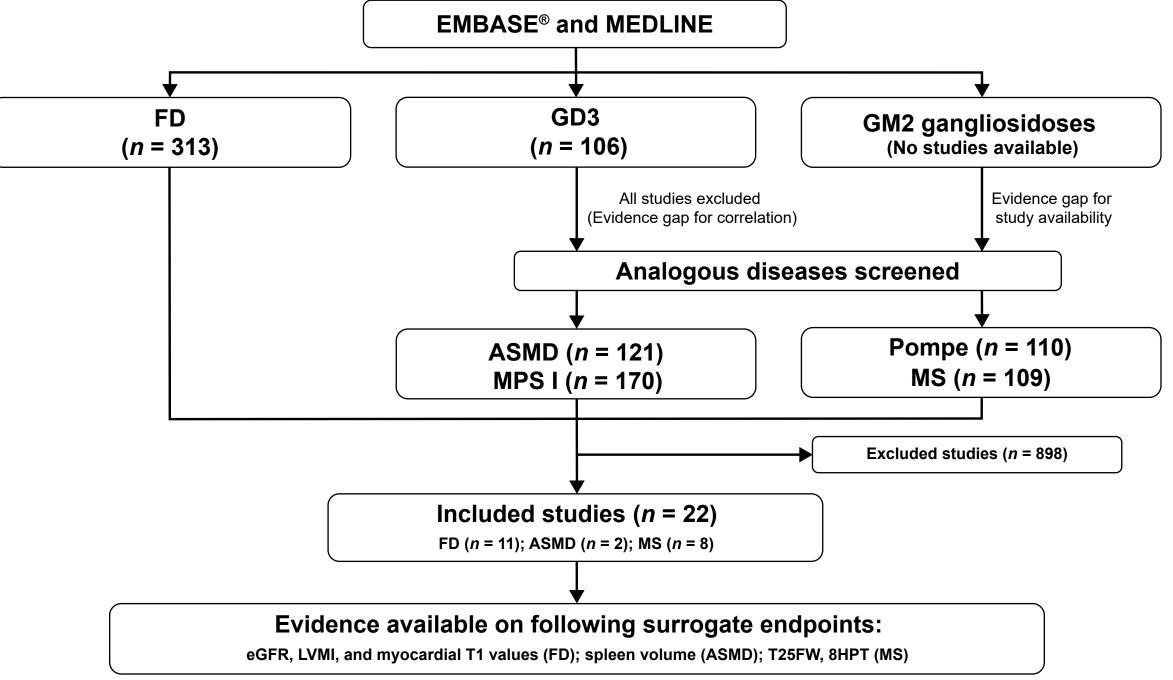

AF, atrial fibrillation; b, regression coefficient; CI, confidence interval; CV, cardiovascular; eGFR, estimated glomerular filtration rate; EQ-5D, EuroQol-five dimensions of health; EQ VAS, EuroQol visual analogue scale; FD, Fabry disease; HR, hazard ratio; HRQoL, health-related quality of life; LVM, Left ventricular mass; LVMI, left ventricular mass index; MWT, maximum wall thickness; MSSI, Mainz Severity Score Index; *r*, correlation coefficient

Table 2. Studies reporting association/correlation between surrogate and long-term outcomes in GM2 gangliosidoses

Surrogate endpoint	Long-term outcome	Study design	Statistical analysis	Variables assessed	Measure of association	<i>p</i> -value	
T25FW	Walking ability	Post-hoc analysis of	,	MWD-EDSS ^a	χ ² = 17.6; <i>df</i> = 7	0.014	
		prospective cohort ¹⁷			$\chi^2 = 8.6; df = 3$	0.034	
		Retrospective ¹⁸	Cox proportional hazard model	Confirmed disability progression ^b	HR = 2.6 (95% CI, 2.2; 3.1)	-	
		Cross-sectional ^{21,c}	Multivariate regression	ISS scores	b = -0.07	<0.001	
				RMI scores	b = 0.04		
				Fall frequency	OR = 1.01	0.048	
	Cognitive	Retrospective		PASAT	<i>r</i> = −0.28	<0.001	
	function	observational ²⁰	Spearman				
	Neurological disability	Retrospective ¹⁹	correlation	GNDS	<i>r</i> = 0.23	-	
9HPT	Walking ability	Retrospective observational ²⁰	Spearman correlation	EDSS	r = -0.50	<0.001	
	Cognitive function			PASAT	<i>r</i> = 0.21 ^d	0.01	
	Neurological disability	Retrospective analysis of longitudinal database ¹⁹	Soffordion	GNDS	<i>r</i> = 0.20	-	

- A total of 22 studies (FD [n = 11]; ASMD [n = 2]; MS [n = 9]) met the eligibility criteria (**Figure 1**).
- All 22 studies exhibited relationship between surrogate and long-term outcomes at patient level, irrespective of treatment.

Figure 1. Study flow diagram

The surrogate endpoints were identified based on primary, co-primary and secondary endpoints of the CARAT trial (NCT05280548)⁵ for FD, LEAP2MONO trial (NCT05222906)⁶ for GD3 and AMETHIST trial (NCT04221451)⁷ for GM2 gangliosidoses.

Studies related to MPS I and Pompe were excluded as they lack the relevant population/outcomes of interest.

9HPT, 9-hole peg test; ASMD, acid sphingomyelinase deficiency; eGFR, estimated glomerular filtration rate; EMBASE, Excerpta Medica Database; FD, Fabry disease; GD3, Gaucher disease type 3; LVMI, left ventricular mass index; MPS I, mucopolysaccharidosis type I; MS, Multiple sclerosis; *n*, number of evidence; T25FW, timed 25-foot walk

Surrogate endpoints in FD

 Surrogate endpoints selected in FD were reduced estimated glomerular filtration rate (eGFR), left ventricular mass index (LVMI) and myocardial T1 values. ^aChi square statistic value (17.630) was tested using seven categories of T25FW (<5.0, 5.0–5.9, 6.0–6.9, 7.0–7.9, 8.0–8.9, 9.0–9.9 and \geq 10.0 seconds), and chi-square statistic value (8.678) was tested using three categories of T25FW (<6.0, 6–7.9 and \geq 8.0 seconds); ^bThe variable, confirmed disability progression was assessed based on EDSS; ^cIn this analysis, speed of T25FW was considered; ^dIn this analysis, reciprocal of 9-HPT was considered.

9HPT, 9-hole peg test; b, regression coefficient; CI, confidence interval; *df*, degree of freedom; EDSS, Expanded Disability Status Scale; GNDS, Guy's Neurological Disability Scale; HR, hazard ratio; ISS, Incapacity Status Scale; MWD, maximum walking distance; OR, odds ratio; PASAT, Paced Auditory Serial Addition Test; *r*, Spearman correlation coefficient; RMI, Rivermead Mobility Index; T25FW, timed 25-foot walk; χ^2 , chi square statistic

Surrogate endpoints in GD3

 Since there was no evidence identified in GD3, analogous diseases MPS I and ASMD were explored. No relevant studies on MPS I were retrieved. For ASMD, two studies met the eligibility criteria where spleen volume was reported to be associated with increased mortality risk (*n* = 2)^{22,23} (Table 3).

Table 3. Studies reporting association between spleen volume and mortality risk in GD3

Study design	Statistical analysis	Variables assessed	Measure of association
Prospective	Cox proportional hazard	Splenomegaly severity	HR = 9.99 (95% CI, 1.03; 97.14)
longitudinal ^{22,23}	-	Mortality risk with severe splenomegaly vs. moderate splenomegaly	OR = 10.29 (95% CI, 1.70; 62.70)

CI, confidence interval; GD3, Gaucher disease; HR, hazard ratio; OR, odds ratio

Limitations

- The findings cannot be generalised based on a small number of studies evaluated.
- The findings from ASMD and MS may not be directly extrapolated to LSDs of interest due to existing gaps in evidence.

Conclusions

- Studies focusing on FD showed that the worsening of eGFR, LVMI and myocardial T1 values
- Reduced eGFR was associated with decreased HRQoL (n = 3),^{8–10} increased risk of cardiovascular (CV)/neurological/renal events (n = 4)^{11–13} and mortality (n = 1)¹⁴ (Table 1).
- Increased LVMI was associated with increased risk of CV events (n = 1)¹² and CV morbidity as well as mortality (n = 1)¹⁵ (Table 1).
- A study emphasised a negative correlation between myocardial T1 values and morbidity¹⁶ (Table 1).
 Surrogate endpoints in GM2 gangliosidoses
- No evidence was identified in GM2 gangliosidoses and its analogous disease, Pompe. There were no studies that identified and explored the relevance of the endpoint 9HPT and T25FW in GM2 gangliosidoses; 9HPT and T25FW, which were studied as measures for impaired coordination and motor disability in MS, were there fore explored.
- Increase in T25FW was associated with walking disability (n = 3),^{17–18} showed positive correlation with Guy's Neurological Disability Scale (GNDS) worsening¹⁹ and a negative correlation with cognitive performance as measured by Paced Auditory Serial Addition Test (PASAT)²⁰ (Table 2).
- Lower T25FW speed was associated with higher incapacity status scale scores, lower rivermead mobility index scores and higher frequency of falls²¹.
- Increase in 9HPT showed negative correlation with walking ability²⁰ and positive correlation with both GNDS worsening¹⁹ and worse cognitive performance as measured by PASAT²⁰ (Table 2).

are associated with long-term morbidity, mortality and decreased HRQoL.

 Considering limited evidence in specific LSDs, such as GD3 and GM2 gangliosidoses, clinical communities need to rely on endpoint validity using other disease areas, such as ASMD and MS, respectively, to understand the influence between surrogate endpoints and long-term outcomes.

REFERENCES

. Behera M, et al. Cancer Control. 2007;14(2):160–166.

- 2. McLeod C, et al. Contemp Clin Trials Commun. 2019;16:100486.
- 3. Ciani O, *et al. Med Decis Making.* 2021;41(4):439–452.
- 4. Schuster Bruce C, et al. PLoS Med. 2019;16(9):e1002873.
- NCT05280548. <u>https://clinicaltrials.gov/ct2/show/NCT05280548.</u> Accessed on 18th October 2023.
- 6. NCT05222906. 2023. <u>https://classic.clinicaltrials.gov/ct2/show/NCT05222906</u> Accessed on 18th October 2023.
- NCT04221451. 2022. <u>https://classic.clinicaltrials.gov/ct2/show/NCT04221451</u>. Accessed on 18th October 2023.
- 8. Gold KF, et al. Qual Life Res. 2002;11(4):317–327.
- 9. Sigurdardottir S, et al. Orphanet J Rare Dis. 2021;16(1):427.
- 10. Nowak A, et al. 2021. Research Square. 10.21203/rs.3.rs-686816/v1.

CONFLICTS OF INTEREST

JMP, KR, MF, MBR, NL, LP and **RP-J:** Sanofi — employees, may hold stocks and/or stock options in the company. **FL** — was an employee of Sanofi at the time of study conduct.

Goicoechea M, et al. Nefrologia (Engl Ed). 2021;41(6):652–660.
 Feriozzi S, et al. Clin Ther. 2020;42(12):2321–2330.e2320.
 Lenders M, et al. Nephrol Dial Transplant. 2017;32(12):2090–2097.
 Ng MS, et al. Kidney Int Rep. 2021;6(9):2481–2485.
 Patel V, et al. Heart. 2015;101(12):961–966.
 Camporeale A, et al. Circ Cardiovasc Imaging. 2019;12(4):e008424.
 Alshamrani F, et al. Int J MS Care. 2020;22(5):215–218.
 Kalinowski A, et al. Mult Scler. 2022;28(2):289–299.
 Kragt JJ, et al. Mult Scler. 2006;12(5):594–598.
 Jacobs SAH, et al. Int J Rehabil Res. 2016;39(2):134–139.
 Kapetanakis V, et al. Mol Genet Metab. 2021;135(2):S15–S132.
 McGovern MM, et al. Orphanet J Rare Dis. 2021;16(1):212.

ACKNOWLEDGEMENTS

The authors thank Camille Rochmann for her significant contribution to this study. Medical writing support was provided by Kowmudi Veleti and Mau Sinha from Sanofi.

FUNDING This study was sponsored by Sanofi.

Poster presented at ISPOR-EU 2023, 12–15 November 2023, Copenhagen, Denmark