INTRODUCTION

- Eligibility criteria in clinical trials play a pivotal role in patient recruitment and in safety and treatment evaluation, resulting in improved patient care.
- Natural language processing (NLP) techniques offer the potential to enhance the efficiency of clinical trial studies by automatically extracting eligibility criteria. However, NLP approaches face challenges in capturing fine-grained criteria within a given text and may lack applicability across various disease areas.
- Recently, large language models such as ChatGPT and GPT-4 have gained traction in the open NLP domain as well as biomedical and clinical domains.²,³

OBJECTIVE

Our aim is to develop a system that automatically extracts eligibility criteria, emphasizes contextual attributes, and can handle diverse diseases utilizing a cutting-edge large language model.

AUTO-CRITERIA: SYSTEM OVERVIEW AND COMPONENTS

1. **System Overview**
 - Pre-processing
 - Split the raw criteria text for each trial document into two parts: Inclusion and Exclusion, then split each of these parts into smaller chunks and run AutoCriteria on each chunk.
 - Knowledge ingestion
 - Identified the ontology of key criteria entities and attributes for each disease with the help of knowledge experts. This knowledge is also leveraged in prompt modeling.
 - Prompt modeling
 - Created two separate comprehensive prompts, one for Inclusion and another for Exclusion.
 - Each prompt consists of three main components: 1) a general instruction, 2) the Inclusion or Exclusion criteria text, and 3) the query that asks about criteria attributes (phrases), their corresponding values, modifier information, entity types, and source sentences.
 - Post-processing
 - Processed the GPT-4 responses to handle any inconsistencies in the model output.
 - Interim evaluation
 - Evaluated the prompts manually, and iteratively calibrated them using expert feedback for every disease.

2. **Prompt Modeling**

DISCUSSION

- AutoCriteria system not only identifies key criteria but also extracts contextual details including negation/temporal information and classifies entity types.
- Our system is highly adaptable to various diseases, including Cancers, Autoimmune diseases, Alzheimer’s, NAS, and other rare diseases, highlighting its generalizability.

CONCLUSION

- We have developed a generalizable GPT-based system that can identify granular eligibility criteria information from clinical trial documents across a variety of disease domains without requiring manual annotations.
- Our adaptable prompts allow easy customization for new diseases without manual training data, facilitating large-scale criteria analysis.
- With enhanced granularity, improved accuracy and generalizability, AutoCriteria has the potential to significantly streamline the clinical trial initiation and conduct process, ultimately reducing time requirements.

REFERENCES

CONTACT

Please contact the first authors via email: Surabhi Datta: sdatta@imohealth.com, Kyeryoung Lee: klee@imohealth.com