Systematic review of the health-economic impact of diagnostic modality selection for patients with coronary artery disease

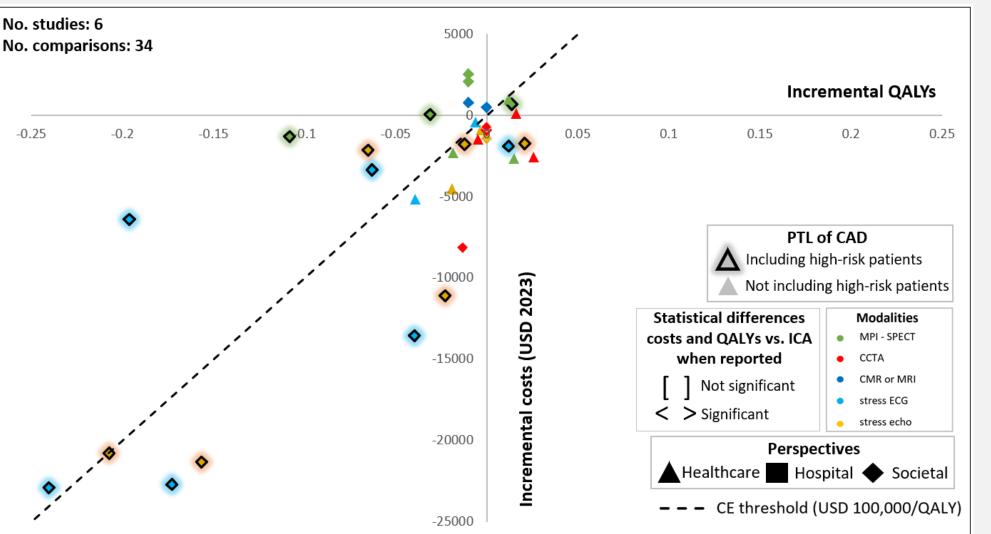
Authors: Kluge B^a, Sanchez I^b, Harris J^b, Perez-Roman I^b, Carter M^b, Christophel S^a, Blankenburg M^a, Greenwood JP^c, Harz C^a ^aBayer AG Pharmaceuticals, Berlin, Germany, ^bWickenstones Ltd, Carlow, CW, Ireland, ^cUniversity of Leeds, Leeds, West Yorkshire, UK

Abstract 125911, presented at Copenhagen, Denmark, November 15, 2023

Introduction

- Non-invasive cardiovascular modalities [CCTA, CMR, ECG, CTA(FFR), MPI-SPECT, PET, SE] are increasingly used, either instead or alongside of invasive modalities [ICA, ICA(FFR)], in the diagnosis and management of coronary artery disease (CAD)^{1,2}
- The clinical advantages of non-invasive compared to invasive modalities are recognised and increasingly established within clinical practice^{3–5}
- However, the economic consequences of non-invasive compared to invasive modality selection are not clearly defined
- The aim of this study is to assess in a systematic review (SR) of the literature, the healtheconomic consequences of non-invasive relative to invasive modality selection in symptomatic individuals with low-, intermediate-, or high-risk of known (or unknown), stable or unstable CAD
- A subset of included studies that conducted head-to-head (H2H) trials is analysed here

Table 1: Included H2H studies by type and region*


Comparisons		Cost-effectiveness studies (n=17)						Cost and resource use studies (n=3)			Utility and mixed studies (n=3)	
CCTA (FFR _{CTA}) vs ICA		n=7	# 🗕	n=2	۲	n=1		n=2	🛑 n=	=1	- 🔝 🏺	n=1
MPI – SPECT vs ICA	<u> </u>	n=5		n=3		n=1	-	n=	1		-	
Stress echo vs ICA		n=5		n=3		n=1		-			-	
CMR vs ICA		n=3	•	n=2		n=1		-			-	
Exercise ECG vs ICA		4		n=3	-	n=1		-			-	
PET vs ICA		$\langle \rangle$		n=1				-			-	

*The European flags show studies with data from different European countries, including those of interest to the SR.

Cost-effectiveness results

For low-to-intermediate risk patients:

 68% and 100% of comparisons showed that non-invasive modalities are cost saving versus invasive modalities for the US and UK, respectively (Figures 2 and 3) **Figure 2**: The cost-effectiveness plane of reported incremental cost and QALY. Studies from the US

Systematic review question

Methodology

 What is the impact of using invasive or non-invasive modalities for cardiac imaging for diagnosis and management of individuals with low-, intermediate-, or high-risk CAD or IHD*, either known or unknown, from both the economic and HRQoL perspective? (PROSPERO registration ID CRD42022384183)

Identification of studies

 Review methods followed the Centre for Research and Dissemination's (CRD) guidance on conducting systematic reviews⁶

Search strategy

- The search strategy was designed to identify studies in the UK, France, Germany, Italy, Japan, China, and the USA published in any language between 1992 and January 2023
- The search was performed on December 2nd, 2022, in the Medline and Embase, Medline In-Process, Cochrane databases and the UK National Health Service Economic Evaluation Database of Abstract of Reviews and Effects
- Backwards citation research of the included SRs from the previous 3 years and hand searches were also conducted

Data extraction

 There were two stages to data extraction: 1) an extraction of general study characteristics to best identify studies relevant to the research questions and 2) a detailed extraction of study characteristics and outcomes

Data analysis

- H2H studies comparing a non-invasive to an invasive modality were analysed
 - Invasive modalities included: invasive coronary angiography (ICA) and ICA fractional flow reserve (ICA-FFR)
- Non-invasive modalities included: coronary computerised tomography angiography (CCTA), cardiac magnetic resonance (CMR), stress electrocardiogram (ECG), fractional flow reserve derived from computed tomography angiography (CCTA(FFR)), myocardial perfusion imaging single photon emission computed tomography (MPI-SPECT), positron emission tomography (PET) and stress echocardiography (SE)
 Analysis was conducted by study type (cost-effectiveness, cost and resource use, utility and mixed), by perspective (healthcare, societal and hospital), and by risk of CAD

- Incremental impact on QALYs was generally minimal and mixed. While all figures for CCTA, CMR and MPI-SPECT fell between +/-0.1 QALYs, some stress ECG and stress echo results showed larger decrements (Figures 2 and 3)
 - This is expected as the modalities are analysed as diagnostic modalities, not treatment modalities
- 74% and 75% of comparisons showed a non-invasive modality to be cost effective vs. ICA at a willingness to pay (WTP) threshold of \$100,000/QALY and £30,000/QALY for the US and UK, respectively (Figures 2 and 3)
- These results were true for the US and UK, irrespective of the economic perspective taken
- The main drivers of cost-effectiveness were cost savings

Cost-savings and reductions in resource use

Figure 4: The cost-savings per low-to-intermediate risk patient correctly diagnosed by modality in Europe and the US*

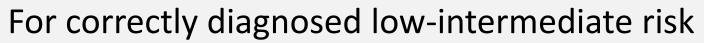
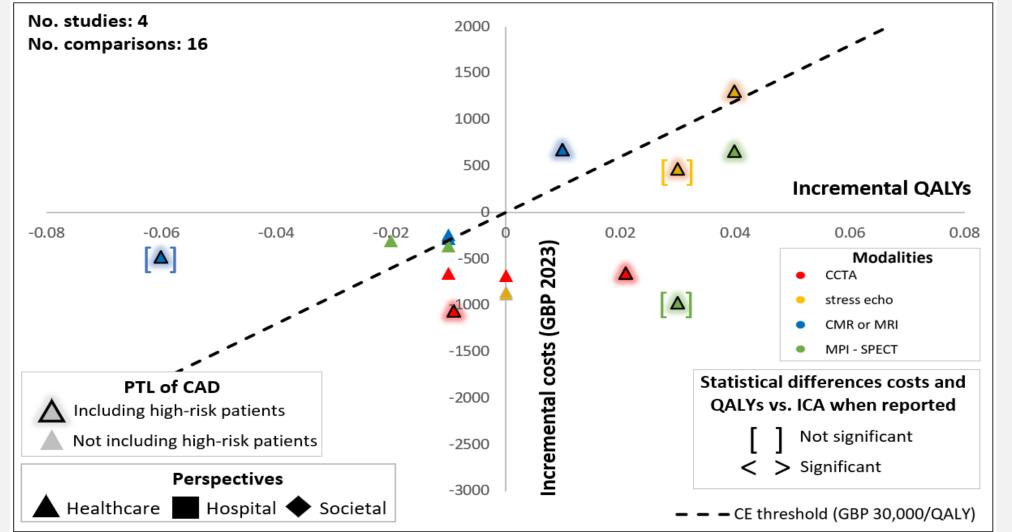



Figure 3: The cost-effectiveness plane of reported incremental cost and QALY. Studies from the UK*

*For UK patients, authors provided mixed results on costs and QALY outcomes when comparing ICA and CMR, mainly due to the limited data available at the time of the analyses.^{7,8}

*IHD, (ischemic heart disease), a term often used in the literature interchangeably with CAD

Results

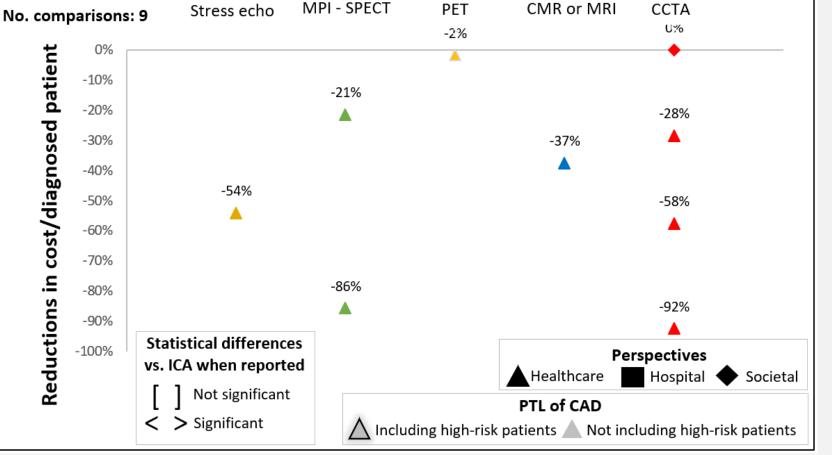
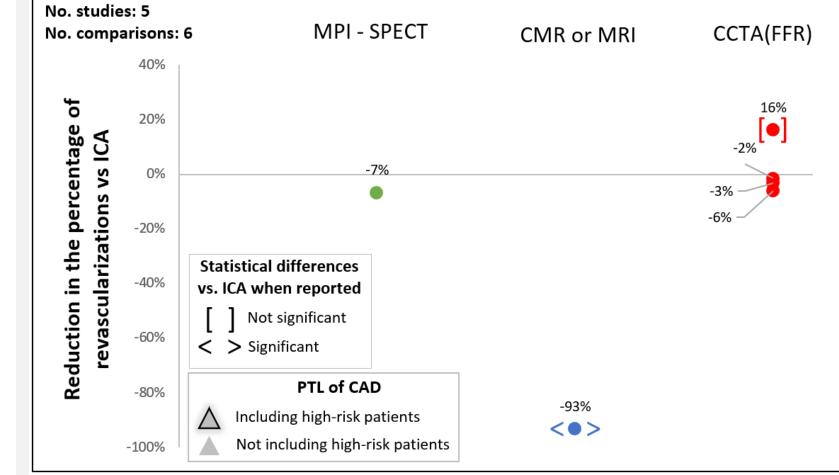

- Of 10,089 records screened, 160 met the inclusion criteria and 23 reported H2H comparisons (Figure 1)
- H2H comparisons
- 17 cost-effectiveness, 3 cost and resource use, 2 mixed (utilities, cost and resource use) and 1 utility
- Patients were 50–65 years old, predominantly male (≥50%) and most had stable CAD and a low-to-intermediate risk of CAD
- Most studies used the healthcare perspective (39%), followed by the societal perspective (22%)
- CCTA vs. ICA was the most frequent comparison, mostly in US studies (Table 1)
- Outcomes
- During the last decade, most studies concluded that CCTA and CMR are cost-effective and/or cost-saving compared to ICA across all risk levels. Prior to this (1999–2014) studies found CCTA more favourable than ICA in low-intermediate risk patients

Figure 1: PRISMA flow diagram

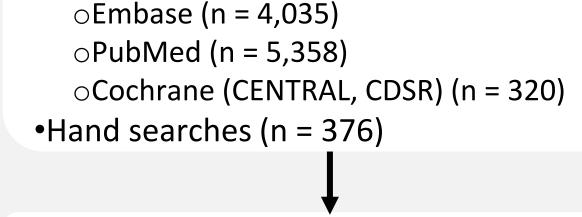
cation


Total records identified (n=10,089)
 ●Database searches (n = 9,713)
 ○Embase (n = 4,035)

Deduplication: Duplicate records

*All studies were conducted in Europe except for one study conducted in the US, demonstrating cost savings of 86% for MPI - SPECT and 92% for CCTA.

Figure 5: The percentage of revascularisations by modality in Europe and the US for low-to-intermediate risk patients*



*All studies were conducted in Europe, except one study in the US, that reported a 2% reduction in revascularizations for CCTA and a 7% reduction for MPI-SPECT.¹²

Utility results

patients:

- All non-invasive modalities, particularly CCTA and CMR, showed lower total costs per patient vs. ICA
- **Cost-savings ranged between 2–92% per patient** when using non-invasive rather than invasive modalities (Figure 4)
- **Cost-savings were driven by the cost of the tests and the use of fewer resources** when using non-invasive modalities vs. ICA^{9,10}
 - Non-invasive modalities mostly reduce
 unnecessary revascularisations compared
 to ICA (Figure 5)
- The strongest effect is reported for CMR, with a reduction in revascularisations by
 93% compared to ICA, which, together
 with the reduction in resource use, led to a reduction in costs¹¹
- In Europe, CCTA(FFR) reduced the length
 of hospital stays (days) compared to ICA
 (by 34% and 47%)^{13,14,15}

Records screened (ti/ab screening) (n = 8,780)

Reports assessed for eligibility (full-text screening; n = 544)

Backwards citation searching (n = 1)

♦ Studies included in review (general extraction; n = 160)

Studies reporting H2H comparisons (full-text extraction; n = 23) removed (n = 1,309) Records excluded (n = 8,236)

Records excluded (n = 385):

- Publication type (n = 55)
 Duplicates (n = 14)
- Language (n = 3)
- Intervention (n = 61)
- Country (n = 90)

 \rightarrow

- Date (n = 61)
- Outcome (n = 65)
 Population (n = 31)
- Population (n = 51)• Design (n = 5)

Studies reporting other comparisons of interest (n = 137) The single, small (n=30) utility study showed no statistically significant difference between the disutility associated with CCTA and ICA, with a trend towards more disutility for ICA¹⁶

Conclusions

- Overall, non-invasive modalities were cost-saving vs. ICA in CAD diagnosis in low-to-intermediate risk patients, while no clear trend on QALYs was observed for CCTA, CMR and MPI-SPECT; this was consistent across healthcare and societal perspectives
- Cost-savings per low-to-intermediate risk patient correctly diagnosed were between 2–92% per patient, and were driven by the cost of the tests and the use of fewer resources:
 - CCTA is the non-invasive modality that showed the shortest hospital stays and highest cost savings compared to ICA

Abbreviations: ACS, acute coronary syndrome; CAD, coronary artery disease; CCTA, coronary computerised tomography angiography; CE, cost-effectiveness; CMR, cardiac magnetic resonance; CRD, Centre for Research and Dissemination's; ECG, electrocardiogram, CCTA(FFR), fractional flow reserve derived from computed tomography angiography; HRQoL, health related quality of life; H2H, head-to-head; ICA, invasive coronary angiography; ICA(FFR), invasive coronary angiography – fractional flow reserve; MI, myocardial infarction; MPI-SPECT, myocardial perfusion imaging – single photon emission computed tomography; PET, position emission tomography; PRISMA, preferred reporting items for systematic reviews and meta-analyses; PTL, pre-test likelihood; SE, stress echocardiography; SR, systematic review; QALY, quality-adjusted life year; Ti/abs, title/abstract; WTP, willingness to pay

References ¹Knuuti et al. European Heart Journal, 2020, 41(3), 407-77. ²Writing committee members et al. Journal of the American College of Cardiology, 2021, 78(22), 187-285. ³Achenbach et al. European Heart Journal Cardiovasc Imaging, 2022, 23(4), 465-475. ⁴Douglas et al. The New England Journal of medicine, 2015, 372(14), 1291-1300. ⁵Williams et al. Journal of the American College of Cardiology, 2016, 67(15), 1759-1768. ⁶Centre for Reviews and Dissemination & Akers, J. 2009 Systematic reviews : CRD's guidance for undertaking reviews in health care: York : CRD, University of York, 2009., Available at: <u>http://www.york.ac.uk/crd/SysRev/ISSL!/WebHelp/SysRev3.htm</u>). ⁷Sharples et al. Health Technology Assessment – Southampton, 2007, 11(49). ⁸Thom et al. BMJ, 2014, 4(2), e003419. ⁹ Dorenkamp M et al. Heart, 2012, 98(6):460-7. ¹⁰Dewey M, et al. European radiology, 2007, 17:1301-9.). ¹¹Genders et al. Annals of internal medicine, 2015, 162(7), 474-84 . ¹² Ge Y, et al. Cardiovascular Imaging. 2020 Jul 1;13(7):1505-17. ¹³Colleran et al. Open heart, 2017, 4(1), e000526. ¹⁴Douglas et al. Journal of the American college of cardiology, 2016, 68(5), 435-45. ¹⁵Dewey et al. BMJ, 2016, 355(544). ¹⁶Sadigh G et al. Academic Radiology, 2013, 20(9):1091-8.