
Assess the implications of OS data maturity and survival model selection on mean OS

• Overall survival (OS) is a key endpoint to evaluate the cost-effectiveness of oncology therapies.

• For cancer therapies that lead to durable responses and prolonged survival in a subset of patients the

potential improvement in OS may only become apparent with longer trial follow-up and large trial sample

sizes.

• Long-term extrapolation of immature OS data constitutes a source of high uncertainty, and it is among the

cost-effectiveness model components under higher scrutiny by HTA bodies and payers.

• Mean OS provides a measure of how each survival model predicts OS across for the relevant time

horizon for cost-effectiveness analyses.

• A retrospective study of published short-term versus corresponding long-term OS data available in the

public domain was conducted in 2L+ NSCLC to assess the impact of survival model selection for long-

term extrapolations on mean OS estimates.
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Methods

• A targeted review of clinical trials of monotherapies in 2L+ NSCLC identified 12 studies (with 20

populations) reporting OS with short and long-term follow-up.

• OS Kaplan-Meier curves for each of the population were extracted from the available publications and

digitized to generate two datasets for each population (2x20) (Table 1).

• 6 conventional parametric models (exponential, Weibull, Gompertz, log-normal, log-logistic, generalized

gamma) and 3 spline models (hazard, odds, normal with 3 knots) were fitted to the reconstructed IPD data

to extrapolate OS for a lifetime horizon and estimate mean OS.

• All survival extrapolations were adjusted for UK general population mortality. Mean OS was estimated

over a lifetime time horizon (i.e., less than 1% survival)

• Survival models were ranked based on goodness-of-fit was based on the Akaike information criterion

(AIC) (i.e., the model with lowest AIC was ranked as best fitting model)

Trial Therapy Number of patients

ATLANTIC Cohort 1 (EGFR+/ALK+) Durvalumab 107

ATLANTIC Cohort 2 (EGFR−/ALK−) Durvalumab 243

LUX-Lung 8 Afatinib; Erlotinib 398 + 397

POPLAR Atezolizumab; Docetaxel 144 + 143

KEYNOTE-010 Pembrolizumab; Docetaxel 690 + 343

OAK Atezolizumab; Docetaxel 613 + 612

CheckMate 017 Nivolumab; Docetaxel 135 + 137

CheckMate 057 Nivolumab; Docetaxel 292 + 290

Pooled CheckMate 017 & 057 Nivolumab; Docetaxel 427 + 427

KEYNOTE-001 Pembrolizumab 449

Pooled NP28673 & NP28761 Alectinib 225

ALTA Brigatinib 110

AURA Osimertinib 201

Table 1: List of populations included in the analyses

Results

• Mean OS estimates from extrapolated data consistently increased with longer follow-up data for all

included survival models. An increase in mean OS was observed for all three therapy classes.

Chemotherapy showed a smaller increase compared with immunotherapy and targeted therapy, which

can be partially explained by the highest level of maturity of the shorter follow-up datasets compared with

the other therapy classes.

• Across all populations, log-logistic and log-normal were associated with more consistent results between

the short- and long-term datasets. Gompertz resulted in a substantially greater increase than all the

remaining models, due mainly to the overestimation of OS in the longer follow-up datasets. This can be

explained by the characteristics of the Gompertz distribution (monotone hazard rates that either increase

or decrease exponentially with time) which fitted curves with hazards tending to zero in several long-term

datasets.

• Goodness of fit based on AIC was not a good guide to reduce underestimation of OS and was not a good

guide to the extent of increase in mean OS for shorter vs longer follow-up data

• The differences observed with longer follow-up emphasize the need to complement survival models with

external data from other trials, registries or expert elicitation when extrapolating immature data for cost-

effectiveness analyses.

Conclusions

• Results showed an increase in mean OS with longer follow-up, regardless of the choice of survival model.

The overall average percentage change in mean OS for short-term versus long-term follow-up was 23%.

Log-normal (2%) and log-logistic (5%) were less prone to underestimate OS extrapolated from shorter

follow-up datasets. In turn, Gompertz showed the highest increase in mean OS (78%) (Figure 1).

• In 19/20 comparisons, mean OS increased with longer follow-up data, with the average change across all

survival models ranging between -2% and 65%. An increase in mean OS was observed for all therapy

classes: immunotherapy (28%), targeted therapy (25%) and chemotherapy (docetaxel; 14%) (Figure 2).

• In 11/20 populations, all survival models tested resulted in an increase in mean OS with longer follow up

data. There were only 26/177 survival models that resulted in a decrease in mean OS. (Figure 3).

• Considering only the best fitting survival models (based on AIC), the increase in mean OS was higher

than the average across all survival models for 14/20 populations (Figure 4).

• Average AIC ranking of each survival model did not show a clear correlation with the % change in mean

OS (i.e., best fitting models did not result in more consistent mean OS estimates between shorter and

longer follow-up data) (Figure 5).

Figure 1: % change in mean OS for short- versus long-term follow-up data – Average 

across all populations

Figure 3: Number of survival models for which longer follow-up data resulted in an 

increase in mean OS

Figure 5: % change in mean OS vs AIC ranking
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Figure 2: % change in mean OS for short- versus long-term follow-up data by 

population – Average across all survival models

Figure 4: % change in mean OS for short- versus long-term follow-up data by 

population – Difference between best fitting models (based on AIC)
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