MT56

Beyond the Hype - Economic Evaluation and Technology Readiness of Artificial Intelligence in Healthcare: Systematic Review and Meta-Analysis

Carlos Godoy Junior, Bart-Jan Boverhof, Maureen Rutten-van Mölken, Carin Uyl-de Groot, Ken Redekop

Background

- Recent reviews reveal inadequate quantity and quality of health economic evaluations (HEE) on medical AI.
- These studies have also highlighted methodological deficiencies as the main problem.
- An often-overlooked element is the maturity (developmental stage) of the Al under evaluation.

Aim

• Investigate the link between medical AI maturity and HEE quality.

Methods

- Search was conducted in 6 databases (EMBASE, MEDLINE, Web of Science, Cochrane Database, NHS EED, and Google Scholar) following PRISMA 2020 guidelines.
- Maturity of the medical AI was assessed using the Technology Readiness Level (TRL) scale (*Table 1*).
- HEE quality was evaluated using the CHEERS checklist and the rigor of the cost assessments, specifically examining whether Al's implementation and operational costs were accounted for.

Results

- Of 6503 articles, 69 met the selection criteria (*Table 2*).
- Most (75%) of the AI technologies were evaluated in the early development stages (TRL 4 and 5, *Table 3*).
- Notably, most HEE's overlooked the implementation and operational costs when assessing low TRL AI technologies (*Table 4 and Figure 1*).

Table 1: Technology Readiness Level (TRL).*

*Adapted from NASA TRL into a clinically applicable scale by Fleuren et al. (Clinical Machine Learning Readiness Level).

TRL 9: Model integration

TRL 8: Clinical outcome evaluation

TRL 7: Workflow implementation

TRL 6: Real-time testing

TRL 5: Model validation

TRL 3-4: Model prototyping & Model development

TRL 2: Proposal of model/solution

TRL 1: Clinical problem identification

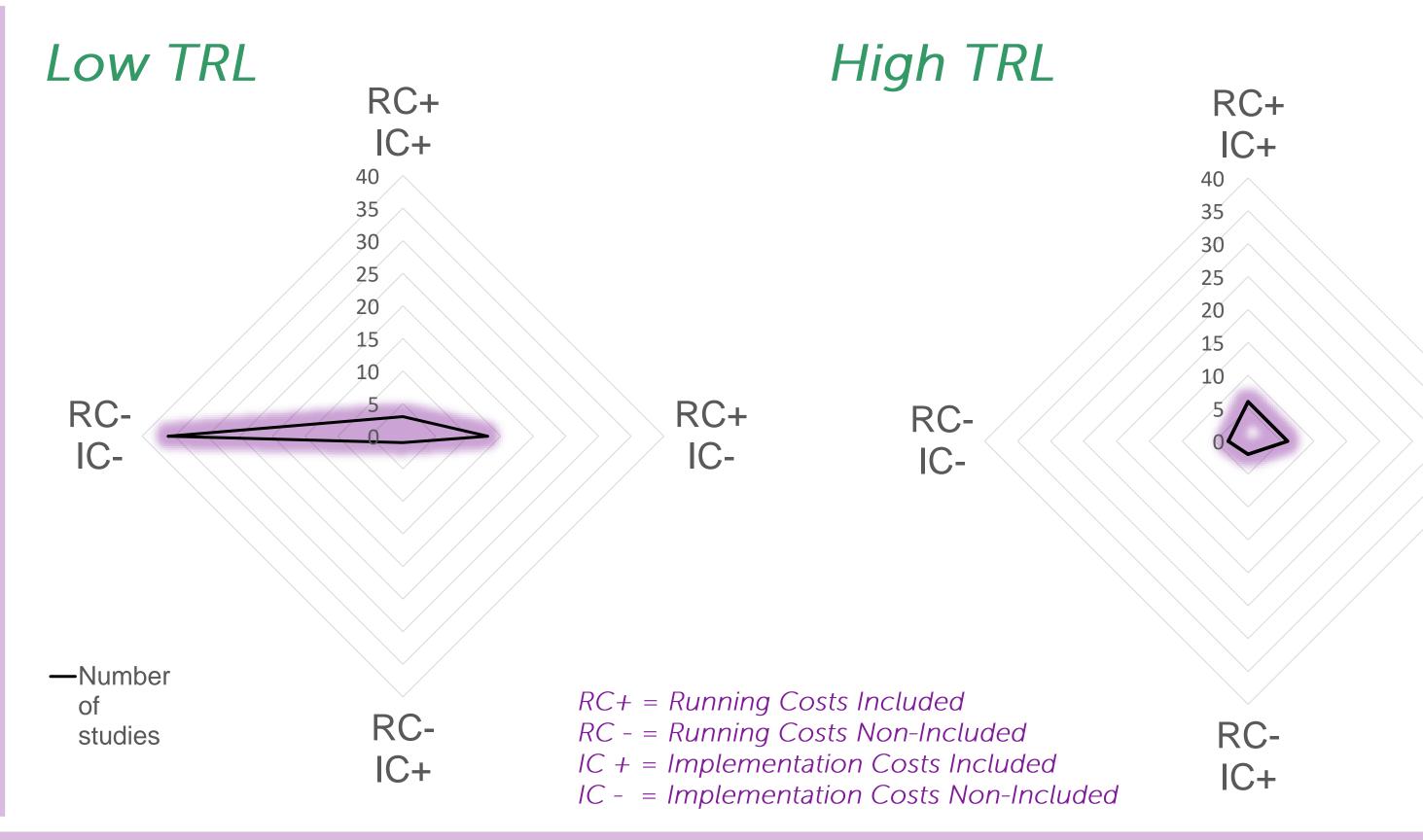
Table 2: Overview of the 69 studies.

Table 3: Overview of the methodological specifics of the 69 studies.

	specifics of the 09 studies.				
Variable	% (N)	Variable	% (N)		
Medical Field: a		Type of HEE:			
General medicine	14% (10)	CEA	55% (37)		
Ophthalmology	11% (8)	CMA	40% (28)		
Radiology	9% (6)	BIA	4% (3)		
Cardiology	7% (5)	Total Cost	1% (1)		
Other	58% (40)	Perspective:			
Application type:	0070 (10)	Healthcare	61% (42)		
Prevention and	270/ (26)	Hospital	22% (15)		
	37% (26)	Societal	10% (7)		
screening		Patient	3% (2)		
Care process management	25% (17)	Hospital + Societal	2% (1)		
		Healthcare+ Societal	2% (1)		
Clinical diagnostics	25% (17)	Time Horizon:			
Automatic triage	13% (9)	< 1 year	28% (19)		
Al model type:		1 year	22% (15)		
Neural network	45% (31)	> 1 year	43% (30)		
Unknown	26% (18)	Not Reported	7% (5)		
Ensemble	9% (6)	CHEERS (0-100%):			
Expert system	9% (4)	Mean	61%		
Other	11% (8)	CMA mean	47%		
Year of publication:	1170 (0)	CEA mean	71%		
_	400/ (22)	TRL (1-9):			
1996-2020	48% (33)	Low (TRL 1 - 5)	75%		
2021-2022	52% (36)	High (TRL 6 - 9)	25%		

Table 4: Correlation between AI's implementation or operational costs and TRL.

	Low TRL % (N)	High TRL% (N)	OR ^a
Implementation Costs Not Included		53% (9/17)	10.15***
Operational Costs Not Included		29% (5/17)	5.26**


Low TRL (TRL 1-5): medical AI not tested or implemented in clinical settings
High TRL (TRL 6-9): medical AI already tested or implemented in clinical settings
Implementation Costs: investments in physical infrastructure, education expenditures
& training, and outlays for data preparation

Operational Costs: ongoing costs such as software licensing fees, hardware

maintenance and associated utility expenses

a=***p<0.001, **p<0.001

Figure 1: Correlation between Al's implementation or operational costs and TRL.

Key Take-Aways

- TRL of the AI technology under evaluation should always be reported as it describes a technology's maturity at one point in time.
- Health economic evaluations of AI technologies often neglect implementation and operational costs.
- This oversight is especially true for relatively immature (Low TRL) AI technologies.
- Implementation and running costs should be incorporated in health economic evaluations for medical AI technologies.

RC+