Patient-physician sex concordance and associations with treatment practices and cancer outcomes in a real-world population-based cohort

Philip Q. Ding^{1,2}, Dylan E. O'Sullivan¹, Ali Okhovatian, Rubab Shamsi¹, Aisha Wada¹, Christie Farrer¹, Colleen Cuthbert¹, Darren R. Brenner¹,

ONCOLOGY

OUTCOMES

Winson Y. Cheung¹ ¹Oncology Outcomes Program, University of Calgary, Calgary, AB, Canada; ²University of Alberta, Edmonton, AB, Canada

Background

- The #MeToo movement has drawn necessary attention to the sex and gender inequities that permeate many relationships, including that of the patient and their physician
- Prior research has linked patient-physician sex discordance with inferior surgical and cardiac outcomes
- The impact of sex inequities in healthcare may be magnified in medical oncology, where patients and physicians often navigate life-limiting illnesses and intensive treatments

We examined cancer treatment practices and survival outcomes in sex-concordant vs. discordant patientphysician dyads.

Methods

A population-based, retrospective cohort study of adults diagnosed with stage II-IV colon or lung cancer between 2013 and 2020 in Alberta, Canada and referred to medical oncology.

Patient-physician dyads:

Sex-concordant: **PP** or **dd** Sex-discordant: ♀♂ or ♂♀

Study data: Patient demographic and clinical information from the Alberta Cancer Registry, physicianlevel demographics from the College of Physicians & Surgeons of Alberta database

Endpoints: Overall survival (OS), cancer-specific survival (CSS), systemic anti-cancer therapy (SACT) use, time to adjuvant SACT initiation

Analysis: Descriptive statistics for baseline characteristics; Kaplan-Meier methods for time-to-event data; multivariable Cox/logistic regression for associations; differences assessed using Pearson's χ^2 , Wilcoxon rank sum, and log rank tests; propensity score matching for sex concordant vs discordant patients

Results

Table 1. Baseline characteristics by sex concordance, PSM cohort

PSM covariate	Overall, N = 8,192	Sex-concordant N = 4,096	Sex-discordant N = 4,096	P value	SMD
Sex				1.00	<0.001
Female Male	3,998 (49%) 4,194 (51%)	1,999 (49%) 2,097 (51%)	1,999 (49%) 2,097 (51%)		
Age at diagnosis, y				0.04	0.040
Mean ± SD Median (Range)	67 ± 12 68 (22, 96)	67 ± 11 68 (22, 96)	67 ± 12 68 (24, 96)		
Residence				0.002	0.068
Urban Rural	6,614 (81%) 1,578 (19%)	3,362 (82%) 734 (18%)	3,252 (79%) 844 (21%)		
Charlson comorbidity index				0.10	0.055
0 1 2 3+	5,005 (61%) 1,850 (23%) 813 (10%) 524 (6%)	2,458 (60%) 971 (24%) 405 (10%) 262 (6%)	2,547 (62%) 879 (21%) 408 (10%) 262 (6%)		
Cancer site				0.79	0.006
Colon Lung	3,654 (45%) 4,538 (55%)	1,833 (45%) 2,263 (55%)	1,821 (44%) 2,275 (56%)		
Stage				0.02	0.064
II III IV	1,539 (19%) 2,884 (35%) 3,769 (46%)	754 (18%) 1,393 (34%) 1,949 (48%)	785 (19%) 1,491 (36%) 1,820 (44%)		

Table 2. Treatment patterns by patient-physician sex concordance

		Patient-ph	Patient-physician dyad	
	All Patients	Sex-concordant	Sex-discordant	P value
Stage II-III only (N = 6,017)				·
Adjuvant SACT use	1,434 (23.8%)	744 (24.5%)	690 (23.2%)	0.24
Median time to adjuvant SACT (range), wk	8.1 (1.3, 12.0)	8.1 (1.6, 12.0)	8.1 (1.3, 12.0)	0.57
Stage IV only (N = 6,016)				
SACT use	3,783 (62.9%)	1,881 (62.6%)	1,902 (63.2%)	0.62
Median time to SACT (range), wk	6.6 (0.4, 213.7)	6.7 (0.4, 181.4)	6.4 (0.4, 213.7)	0.24

Figure 2. Overall survival by patient-physician sex concordance, PSM cohort

Figure 3. Cancer-specific survival by patient-physician sex concordance, PSM cohort

Table 2. Overall survival and cancer specific survival estimates by patient-physician sex concordance, PSM cohort

	All notionts	Patient-physician dyad		
	All patients	Sex-concordant	Sex-discordant	
Median OS (95% CI), mo	24.5 (23.1-25.8)	23.5 (21.9-25.3)	25.3 (23.8-27.4)	
5-year OS (95% CI)	0.34 (0.33-0.35)	0.34 (0.32-0.35)	0.35 (0.33-0.37)	
Median CSS (95% CI), mo	32.0 (29.8-34.4)	30.2 (27.3-33.9)	33.5 (30.6-36.6)	
5-year CSS (95% CI)	0.41 (0.40-0.43)	0.41 (0.39-0.43)	0.42 (0.40-0.44)	

Conclusions

- Sex concordance between patients and medical oncologists was not independently associated with differential SACT use, OS, or CSS.
- However, male patients treated by female physicians had worse outcomes vs. those treated by male physicians (OS HR 1.09 [95% CI 1.00-1.16], p = 0.048; CSS HR 1.10 [95% CI 1.01-1.19], p =0.02).

Cancer outcomes may be prone to the effects of sex bias in specific patient-physician relationships