Machine Learning Prediction of Drug Overdoses among Young People

Luke Liangzhi Dai-Woodys, PhD University of Dundee

Contact

linkedin.com/in/luke-dai-woodys

HTA343

Objectives	Results	Results
Drug overdose deaths are rising	Area under the curve	Information gains

among young people in the United States.

This study examines whether machine learning can predict drug overdoses among young people.

Data

Datasets

• United States National Survey on Drug Use and Health from 2005 to 2014

Sample

- 356704 observations
- Age: 15-24 years

- Decision Tree yields an area under the curve (AUC) of 0.66 with 95% confidential intervals (CI) between 0.62 and 0.71.
- Logistical Regression shows an AUC of 0.62 (95% CI: 0.58-0.67).
- AUCs of the two models are over 0.5, indicating the effectiveness of both models on overdose prediction.
- The AUC of Decision Tree is larger than the AUC of Logistical Regression, implying a better performance of classification than regression.
 - Table 2 Measures for model performance

Logistical Decision Tree

Variables with high information gains:

pain reliever dependence, marijuana dependence, depression, heroin dependence, alcohol dependence, cocaine dependence, anxiety, stimulant dependence, unemployed status, marijuana abuse and hallucinogen abuse.

Figure 1 Variables with high gains				
pain reliever dependence				
marijuana dependence				
depression				
heroin dependence				
alcohol dependence				
cocaine dependence				

Modelling

Models

- Classification: Decision Tree
- Regression: Logistical Regression

Variable categories

• Demographics, drug use, drug dependence, drug abuse, mental health, insurance status, health behaviours and health conditions

Different sizes of sample

- 10%, 30%, 50% and 80% proportions of the sample
- To understand if a smaller sample size can predict drug overdoses as well as the full size

	Decision Tree	Regression
AUC	0.66	0.62
95% CI	[0.62, 0.71]	[0.58, 0.67]
Sensitivity	0.07	0.52
Specificity	0.94	0.64

Different sample sizes

- With the increasing proportions of training sets, the AUCs of Decision Tree and Logistical Regression stay around 0.65 and 0.62 respectively.
- The AUCs of above proportions of training sets cover the AUCs of the full set.

Table 2 AUCs under different sizes of

Conclusions

- Drug overdoses among young people are predictable by machine learning.
- Classification models perform better than regression models.

Information gains of variables • Variables with high information gains can indicate a simplified portfolio for further applications.

	training sets		
	Decision	Logistical	
	Tree	Regression	
10%	0.63	0.62	
30%	0.65	0.61	
50%	0.66	0.62	
80%	0.65	0.62	

• The full sample reaches the optimum on predicting drug overdoses among young people.

• Variables with high information gains are recommended for practical applications on the prediction.