

Real-World Prescribing of GLP-1 RAs Among Patients with Overweight or Obesity in the United States

Patricia J Rodriguez, PhD MPH¹, Brianna M Goodwin Cartwright, MS¹, Samuel Gratzl, PhD¹ Rajdeep Brar, MD, MHS¹, Nicholas Stucky, MD PhD^{1,2} ¹Truveta Inc, Seattle, WA; ² Providence St Joseph Health, Portland, OR

Background

Existing knowledge

- GLP-1RA-based medications have been FDA-approved as treatment for type 2 diabetes (T2D) in the US since 2005.
- Some GLP-1 RAs (semaglutide, liraglutide) have more recently received FDA approval as treatments for obesity in the US.
- GLP-1s RAs have recently gained widespread attention for weight loss in the US, with various GLP-1 RAs experiencing intermittent or prolonged shortages [1,2].
- High rates of off-label use of GLP-1 RAs labelled for treatment of T2D

Results

Patient characteristics

- N = 180,389 patients with overweight or obesity newly prescribed a GLP-1 RA
- Average age of **55.2 years** and **67.2% were female**
- 55.5% of patients also had type 2 diabetes (T2D)
- 60.8% of new prescriptions were for T2D-labelled medications. Of these, 55% were prescribed on-label (semaglutide: 66% on-label, liraglutide: 64% on-label, tirzepatide: 46% on-label, other: 85% on-label)

Patient characteristics by medication

have been reported in media, but scientific literature is lacking.

Objective

• To describe recent trends in the real-world, first-time prescribing of GLP-1 RAs among patients with obesity or overweight in the US.

GLP-1 RA medications approved for use in the US

Medication		FDA –Labelled Use	
		T2D	Obesity
Semaglutide	0.5 mg (OZEMPIC)	\checkmark	
	7.0 mg oral (RYBELSUS)	\checkmark	
	2.4 mg (WEGOVY)		\checkmark
Tirzepatide	5.0 mg (MOUNJARO)	\checkmark	
Liraglutide	1.2 mg (VICTOZA)	\checkmark	
	3.0 mg (SAXENDA)		\checkmark
Dulaglutide	1.5 mg (TRULICITY)	\checkmark	
Lixisenatide	5.0 – 20.0 mcg (SOLIQUA)	\checkmark	
	20.0 mcg (ADLYXIN) [discontinued in US Jan 2023]	\checkmark	
Exenatide	2.0 mg (BYDUREON)	\checkmark	
	10.0 mcg (BYETTA)	\checkmark	

	Semaglutide (N=114,842)	Liraglutide (N=17,029)	Tirzepatide (N=13,419)	Other (N=35,099)	Overall (N=180,389)
Age Group					
18-44	27,641 (24.1%)	6,242 (36.7%)	3,910 (29.1%)	4,870 (13.9%)	42,663 (23.7%)
45-64	57,914 (50.4%)	8,465 (49.7%)	7,204 (53.7%)	17,208 (49.0%)	90,791 (50.3%)
65+	29,287 (25.5%)	2,322 (13.6%)	2,305 (17.2%)	13,021 (37.1%)	46,935 (26.0%)
Female Sex	78,715 (68.5%)	13,461 (79.0%)	9,591 (71.5%)	19,767 (56.3%)	121,534 (67.4%)
Race					
White	81,506 (71.0%)	12,077 (70.9%)	9,994 (74.5%)	23,653 (67.4%)	127,230 (70.5%)
Black or African American	18,246 (15.9%)	3,069 (18.0%)	1,672 (12.5%)	6,077 (17.3%)	29,064 (16.1%)
Asian	2,719 (2.4%)	243 (1.4%)	207 (1.5%)	1,013 (2.9%)	4,182 (2.3%)
Other or Unknown Race	12,371 (10.8%)	1,640 (9.6%)	1,546 (11.5%)	4,356 (12.4%)	19,913 (11.0%)
On-label Condition					
Obesity	18,869 (16.4%)	5,652 (33.2%)	0 (0%)	0 (0%)	24,521 (13.6%)
T2D	57,115 (49.7%)	4,112 (24.1%)	13,419 (100%)	35,099 (100%)	109,745 (60.8%)
Unknown	38,858 (33.8%)	7,265 (42.7%)	0 (0%)	0 (0%)	46,123 (25.6%)
Comorbidities					
Bariatric Surgery	4,086 (3.6%)	1,103 (6.5%)	517 (3.9%)	630 (1.8%)	6,336 (3.5%)
Asthma	23,597 (20.5%)	4,029 (23.7%)	2,693 (20.1%)	6,603 (18.8%)	36,922 (20.5%)
CKD	14,676 (12.8%)	1,664 (9.8%)	1,175 (8.8%)	7,480 (21.3%)	24,995 (13.9%)
COPD	8,098 (7.1%)	1,175 (6.9%)	708 (5.3%)	4,064 (11.6%)	14,045 (7.8%)
Hyperlipidemia	75,414 (65.7%)	8,838 (51.9%)	8,135 (60.6%)	26,896 (76.6%)	119,283 (66.1%)
Hypertension	75,442 (65.7%)	9,616 (56.5%)	8,213 (61.2%)	27,610 (78.7%)	120,881 (67.0%)
Ischemic Heart Disease	8,179 (7.1%)	927 (5.4%)	715 (5.3%)	4,247 (12.1%)	14,068 (7.8%)
Major Depressive Disorder	26,162 (22.8%)	4,802 (28.2%)	2,813 (21.0%)	7,536 (21.5%)	41,313 (22.9%)
T2D	58,210 (50.7%)	4,937 (29.0%)	6,144 (45.8%)	30,123 (85.8%)	99,414 (55.1%)
Anti-diabetic medications					
Insulin	8,537 (7.4%)	1,450 (8.5%)	724 (5.4%)	4,961 (14.1%)	15,672 (8.7%)
Metformin	48,470 (42.2%)	4,833 (28.4%)	4,992 (37.2%)	23,034 (65.6%)	81,329 (45.1%)
SGLT2i	15,826 (13.8%)	1,142 (6.7%)	1,489 (11.1%)	8,743 (24.9%)	27,200 (15.1%)
Anti-obesity medications					
Orlistat	251 (0.2%)	97 (0.6%)	17 (0.1%)	34 (0.1%)	399 (0.2%)
Phentermine Topiramate	768 (0.7%)	251 (1.5%)	119 (0.9%)	39 (0.1%)	1,177 (0.7%)

Standard full doses reported. Dose escalation scheduled used when initiating a GLP-1 RA. Doses may be increased above standard dose if needed.

Methods

Data

- A subset of Truveta Data was used; Truveta Data is comprised of real-world US electronic health record (EHR) data, which is aggregated, normalized, and de-identified from US health care systems comprising clinics and hospitals.
- Data included conditions, medication requests (e.g., prescriptions), laboratory values, and demographics.

Population

- First prescribed a GLP-1 RA between January 2021 and June 2023,
- Obesity (BMI \ge 30) or overweight (BMI \ge 27) in 12 months prior,
- Received regular care at the health care system,
- No history of type I diabetes, gestational diabetes, or diabetic retinopathy, and

Prescribing trends

• Significant increase in seasonally-adjusted first-time prescribing (p < .001) • January to June prescription volumes were 1.6 times higher in 2022 and 3.4 times higher in 2023, compared to 2021.

• First prescription occurred post-approval.

Descriptive analysis

- First-time prescribing volume over time
- Patient demographic and health characteristics
- On- vs. off-label use for prescriptions where the labelled condition for could be identified or inferred using brand or generic name • Seasonally adjusted autoregressive 1 (AR1) model to test for trends in prescribing volume over time

Conclusions

- New prescribing of GLP-1 RAs among patients with overweight or obesity has increased since 2021, including prescribing of T2D-labeled medications to patients with no evidence of T2D.
- Additional work is needed to understand initiation, adherence, and outcomes among patients newly prescribed a GLP-1 RA.

In a large and diverse real-world EHR dataset, GLP-1 RA prescribing for patients with overweight or obesity significantly increased since 2021, with 3.4-fold higher January-June prescribing volumes in 2023 compared to 2021.

Disclosures: PJR, BGC, SG, RB, and NS are employees of Truveta Inc.

Heather P. Whitley, Jennifer M. Trujillo, and Joshua J. Neumiller. Special report: Potential 237 strategies for addressing GLP-1 and dual GLP-1/GIP receptor agonist shortages. Clinical Diabetes, 41(3):467–473, Apr 2023. Ranns, C Hambling, J Diggle, and P Brown. Pcds consensus statement: A strategy for managing the supply shortage of the GLP-1 RAs Ozempic and Trulicity. Diabetes & Primary Care, 24(5), 2022