

Evaluation of the effect of methodological assumptions on estimates of adherence to antipsychotics: a real-world data study

Marina Fuente-Moreno*; Antoni Serrano-Blanco; Maria Rubio-Valera; Alexandra L. Dima; Ignacio Aznar-Lou**

*marina.fuente@sjd.es **lgnacio.aznar@sjd.es

Introduction

The use of **Real-World Data** holds great potential for *medication adherence research* as a non-invasive and low-cost approach. However, *data inconsistencies* (such as missing or outliers) may challenge adherence assessment.

Antipsychotic (AP) treatments are complex. Frequent dose titration, combinations of APs and switching between APs result in *complex prescription patterns,* including:

 ↑ Number of overlapping prescriptions for the same patient and AP drug

What is the actual recommended dosing during these periods?

Would different assumptions affect adherence assessment?

Example of a patient's olanzapine prescription record

• Coexistence of several doses within the overlapping prescription periods

Objective

To assess the frequency of prescription periods with unclear recommended dosing and the **effect of four strategies** with several dosing assumptions on **adherence estimates** to antipsychotic treatments.

Methods

1 Patient identification criteria

Patients \geq 18 years with \geq 1 prescription of AP between 2015 and 2016 in a region of Catalonia, Spain.

Follow-up: 2015-2020

2 Prescription data preparation strategies

Proposed strategies for selecting the recommended dosing within overlapping prescription periods

3 Study cohort

1st **new TE** identified per patient from 2016 that last \ge 30 days

4 Adherence assessment Observation Window (OW): up to 360 days.

DB 1 - Prescription information –
Prescription periods were grouped in <u>Treatment Episodes</u>
(TE) by patient + AP active principle + AP dosage form.
New TE - No registries for the same AP use in the previous 90 days

DB 2 - Dispensing information

Continuous Medication Availability - CMA-7

Proportion of days covered with medication in the OW Total number of days in the OW

STATA[®]

Results

Characteristics and CMA-7 estimates for patients and TE by prescription data preparation strategies

	MINIMUM				Most RECENT				HIGHEST				AGGREGATE			
	Patients		CMA-7		Patients		CMA-7		Patients		CMA-7		Patients		CMA-7	
	n	%	mean	SD	n	%	mean	SD	n	%	mean	SD	n	%	mean	SD
TE	18,292	100%	60.2%	0.38	18,303	100%	59.9%	0.38	18,339	100%	59.5%	0.38	18,536	100%	57.1%	0.37
Sex																
Male	8,419	46.0%	57.8%	0.38	8,423	46.0%	57.4%	0.38	8,443	46.0%	57.0%	0.38	8,527	46.0%	54.4%	0.37
Female	9,873	54.0%	62.3%	0.37	9,880	54.0%	61.9%	0.37	9,896	54.0%	61.6%	0.37	10,009	54.0%	59.3%	0.36
Age*																
< 65 years old	9,751	53.3%	55.4%	0.38	9,758	53.3%	55.1%	0.38	9,778	53.3%	54.7%	0.38	9,873	53.3%	52.2%	0.37
\geq 65 years old	8,541	46.7%	65.6%	0.36	8,545	46.7%	65.2%	0.36	8,561	46.7%	65.0%	0.36	8,663	46.7%	62.6%	0.35
Patients CMA-7 ≤ 10%	3,435	18.8%	-	-	3,450	18.8%	-	-	3,462	18.9%	-	-	3,555	19.2%	-	-
Patients CMA-7 \ge 90%	6,581	36.0%	-	-	6,450	35.2%	-	-	6,354	34.6%	-	-	5,242	28.3%	-	-
Dosage form																
Oral-solid	15,669	85.7%	61.1%	0.38	15,681	85.7%	60.8%	0.38	15,718	85.7%	60.4%	0.38	15,912	85.8%	57.8%	0.37
Oral-liquid	2,141	11.7%	51.9%	0.37	2,140	11.7%	51.4%	0.37	2,140	11.7%	51.2%	0.37	2,144	11.6%	49.6%	0.36
LAI**	482	2.6%	68.0%	0.35	482	2.6%	67.8%	0.36	481	2.6%	67.8%	0.35	480	2.6%	65.9%	0.34
Polytherapy***	5,625	30.8%	-	-	5,576	30.5%	-	-	5,567	30.4%	-	-	5,585	30.1%	-	-
Therapeutic approach****																
Oral-Mono	12,553	68.6%	58.0%	0.38	12,553	68.6%	57.6%	0.38	12,599	68.7%	57.2%	0.38	12,776	68.9%	54.9%	0.37
LAI-Mono	174	1.0%	61.4%	0.38	174	1.0%	61.5%	0.38	173	0.9%	61.4%	0.38	175	0.9%	60.1%	0.37
Oral-Poly	4,822	26.4%	69.5%	0.32	4,830	26.4%	69.1%	0.31	4,820	26.3%	68.8%	0.32	4,836	26.1%	65.5%	0.31
Combined-Poly	743	4.1%	69.9%	0.29	746	4.1%	69.3%	0.3	747	4.1%	68.9%	0.3	749	4.0%	66.0%	0.3

Conclusions

Four data preparation strategies were proposed to account for the gradual increase in the recommended dosing when prescriptions overlap.

The strategies described had a small

Abbreviations: CMA-7, Continuous Medication Availability version 7; TE, treatment episode; LAI, Long-acting injectable

*At the start of the observation window. **AP drugs included as LAI: aripripazole, paliperidone, risperidone. *** Polytherapy: Concomitant AP during \geq 30 days within the OW **** Therapeutic approach: Oral monotherapy: 1 oral AP prescribed; LAI monotherapy: 1 LAI AP prescribed; Oral Polytherapy: \geq 2 oral AP prescribed; Combined polytherapy: \geq 2 AP prescribed being one a LAI

effect on final adherence estimates.

Considering the clinical setting and prescription practices The HIGHEST dosing assumption provided the most accurate estimate of adherence.

Bibliography

- Lehmann A, Aslani P, Ahmed R, et al. Assessing medication adherence: options to consider. *Int J Clin Pharm*. 2014;36(1):55-69. doi:10.1007/S11096-013-9865-X
- Buckley PF, Correll CU. Strategies for dosing and switching antipsychotics for optimal clinical management. *J Clin Psychiatry*. 2008;69(SUPPL. 1):4-17.
- Dima AL, Allemann SS, Dunbar-Jacob J, Hughes DA, Vrijens B, Wilson IB. Methodological considerations on estimating medication adherence from selfreport, electronic monitoring and electronic healthcare databases using the TEOS framework. *Br J Clin Pharmacol*. Published online 2022. doi:10.1111/BCP.15375
- Vollmer WM, Xu M, Feldstein A, Smith D, Waterbury A, Rand C. Comparison of pharmacy-based measures of medication adherence. *BMC Health Serv Res.* 2012;12(1). doi:10.1186/1472-6963-12-155