

Add me on LinkedIn

Cost-Effectiveness Analysis of Onasemnogene Abeparvovec-Xioi (Zolgensma®) and Best Supportive Care Treatment for Spinal Muscular Atrophy I in the Netherlands With Early-Treatment Scenario

Meijer A.¹, Omar Alsaleh A.J.²

¹Bologna University, Amsterdam, Netherlands, ²Bologna University, Bologna, Italy

INTRODUCTION

Spinal Muscular Atrophy (SMA)

- A rare genetic disorder (incidence 1 in 10,000) causing progressive muscle weakness and respiratory failure [1, 2].
- Life expectancy around 2 years and infants are not able to achieve any motor milestones (sitting, walking) [3].
- Recent developments:
 - Nusinersen (Spinraza[®]) [4]
 - Onasemnogene abeparvovec-xioi (OA) (Zolgensma[®]) [5]
- Uncertainties about the long-term treatment effects and high drug costs.
 - Causes debate about the reimbursement of the drugs and pose challenges for patients and the healthcare systems [6-13].

Figure 1: Spinal Muscular Atrophy disease progression, figure made in BioRender.

OBJECTIVE

The aim of this study is to conduct a comprehensive cost-effectiveness analysis of treating SMA Type I patients with OA compared to best supportive care (BSC) (with newly published clinical data [14, 15]) from a societal perspective in the Netherlands with an early-treatment scenario.

Figure 2: Structure of Markov model for SMA type I [7].

METHODS

- Individual state-transition model, with 5 health states based on gaining motor milestones, needing permanent assisted ventilation (PAV) and death [7].
- Lifetime horizon, with monthly cycles. The model consists of two phases:
 - 1. A short-term model of 36 months that uses data from clinical trials.
 - 2. A long-term model that lasts up to 99 years.

Health state transition	BSC	OA treatment			
All patients start in 'not sitting and PAV free' state					
1. & 2.	N/A	STR1VE-US and STR1VE-EU (n=42)			
3. & 4.	NeuroNEXT	NeuroNEXT and STR1VE (n=58)			
5	(11-10)	SMA type II natients (n=240)			
6.		National life tables CBS			
7.	Patients receiving non-invasive ventilation only (n=24)				
T 1 D					

Table 1: Data sources used for health state transitions [14, 18-21].

Parameter	Base-case
Utility value PAV	0.095
Utility value not sitting and PAV free	0.190
Utility value sitting	0.600
Utility value walking	0.850
Monthly costs PAV	€ 12,836
Monthly costs not sitting and PAV free	€ 12,836
Monthly costs sitting	€ 12,485
Monthly costs walking	€ 6,935
One-time costs OA drug	€ 2,195,905
Discount rate costs	0.040
Discount rate outcomes	0.015
Table 2: Madalipputa [10 12 16 17]	

Table 2: Model inputs [10-13, 16, 17].

Assumptions:

- Motor milestones achieved before 36 months (end of short-term model) sustain until death.
- Regression from higher health states to worse health states is not possible.

RESULTS

			Tornado diagram			
al costs	Base-case € 350,878 € 4,386,381 € 4,035,503	Early treatment €3,951,500 €3,600,622	sitting -> walking (OA) not sitting and PAV free -> dead (OA) not sitting and PAV free -> PAV (OA) not sitting and PAV free -> sitting (OA) not sitting and PAV free -> PAV (BSC) not sitting and PAV free -> dead (BSC) PAV -> dead sitting -> dead (OA) € 170,000	€ 220,000 € 270,000	€ 320,000 € 370,000	
	2.46			Upper limit Lowe	er limit	
al LYs	25.05 22.58	34.42 31.96	Discount rate costs Discount rate outcomes Utility value sitting Costs OA drug	Tornado diagram		
al	0.37 16.03 15.66	28.70	Costs sitting Utility value walking Costs walking Costs PAV Utility value PAV			
ALY)	€ 257,717	€127,107	Costs not sitting and PAV free Utility value not sitting and PAV free € 170,000	€ 220,000 € 270,000 ICER (QALY)	€ 320,000 € 370,000	
comes from a societal perspective.			Figure C. R. Z. Outcompage of the DCA pressented in a town of a dimension			
			Figure 6 & 7: Outcomes of the DSA presented in a tornado diagram.			

Both ICERs are above the Dutch willingness-to-pay (WTP)

Markov Trace - BSC

Figure 5: Markov traces of the BSC arm.

ts

reference value of €80,000.

Key drivers influencing the ICERs were the costs of OA treatment and utility and cost values of 'sitting independently' health state.

Figure 4: Markov traces of the OA treatment arm.

CONCLUSIONS

1000

900

800

- ICER of €257,717 > threshold of €80,000 WTP in the Netherlands.
- Significant improvements in disease progression, motor skills, and quality of life compared to BSC.
- Substantial gains in life years 22.58 (25.05 2.46) and QALYs 15.66 (16.03 0.37).
- ICER ZIN: €352,095 (~27% reduction).
- Scenario analysis supported the recommendation of the Dutch Health Council for incorporating SMA in the Newborn Screening Program in the Netherlands [12].

REFERENCES

(1) Kolb, S. J. & Kissel, J. T. Spinal Muscular Atrophy. *Neurologic Clinics* vol. 33 831–846 Preprint at https://doi.org/10.1016/j.ncl.2015. [2] Mercuri, E. *et al.* Prevalence, incidence and carrier frequency of Sq-linked spinal muscular atrophy. Patt 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. *Neuromuscular Disorders* **28**, 103–115 (2015). [2] Mercuri, E. *et al.* Prevalence, incidence and carrier frequency of Sq-linked spinal muscular atrophy. Patt 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. *Neuromuscular Disorders* **28**, 103–115 (2015). [2] Mercuri, E. *et al.* Prevalence, incidence and carrier frequency of Sq-linked spinal muscular atrophy. Patt 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. *Neuromuscular Disorders* **28**, 103–115 (2015). [2] Mercuri, E. *et al.* Prevalence, incidence and carrier frequency of Sq-linked spinal muscular atrophy. Neurologic Clinics vol. 33 831–846 Preprint at https://doi.org/10.1186/s13023-017-0671-8 (2017). [4] Food and Drug Administration (FDA). FDA approves first drug for spinal muscular atrophy. https://www.ida.gov/news-events/persennovative gene therapy to the approves first drug for spinal muscular atrophy. Neurophy. *Neurophy. Neurologic Clinics* vol. 33 831–846 Preprint at https://doi.org/10.1186/s13023-017-0671-8 (2017). [4] Food and Drug Administration (FDA). FDA approves first drug for spinal muscular atrophy. Neurophy. *Neurophy. Neurologic Clinics* vol. 34 831–846 Preprint at https://www.ida.gov/news-events/persennovative gene therapy to reat pediatric patients with spinal muscular atrophy. Neurophy. *Neurologic Clinics* vol. 34 831–846 Preprint at https://doi.org/10.1186/s13023-017-0671-8 (2015). [5] Food and Drug Administration (FDA). FDA approves first drug for spinal muscular atrophy. Neurophy. *Neurologic Clinics* vol. 34 831–846 Prevents. *Neurologic Clinics* vol. 34 831–846 Prevalence, *Scides* eace (2019). [5] Food and Drug Administration.