

Cost-Effectiveness of 13-Valent Pneumococcal Conjugate Vaccine in Indian Adults Aged ≥ 60 Years

Namrata Kulkarni¹, Ahuva Averin², Santosh Taur¹, Liping Huang³, Dhwani Hariharan², Mark Atwood², Neha Gupta⁴

¹Pfizer Ltd, India; ²Policy Analysis Inc., MA, USA; ³Pfizer Inc., Collegeville, PA, USA; ⁴Fortis Memorial Research Institute (FMRI), India

INTRODUCTION

- In India, clinical guidelines recommend use of 13-valent pneumococcal conjugate vaccine (PCV13) followed by 23-valent pneumococcal polysaccharide vaccine (PPV23) among adults, especially those with risk conditions¹
- According to experts, vaccine uptake for the sequential strategy among older adults is low with persons frequently receiving PPV23 alone, likely due to lower costs and lack of awareness
- However, the added benefits of PCV13—including protection against non-bacteremic pneumonia and greater durability of effectiveness—are well-known

OBJECTIVE

- We evaluated the clinical impact and cost-effectiveness of single-dose PCV13 vs. single-dose PPV23 for all adults aged ≥ 60 years in India from the private/patient and government (govt./payer) perspectives

METHODS

Model Overview

- Lifetime risks and costs of invasive pneumococcal disease (IPD), including bacteremia and meningitis, and all-cause non-bacteremic pneumonia (AC-NBP) were projected using a probabilistic cohort model with a Markov-type process
- Model population included all adults aged 60-99 years in India (N=145.6M)^{2,3}:

 - Population was characterized by age (1-yr increments) and risk profile (healthy [immunocompetent without chronic medical conditions], at-risk [immunocompetent with ≥ 1 chronic medical condition], high-risk [immunocompromised])⁴

- Vaccination strategies included a single dose of PCV13 or, alternatively, PPV23 at model entry
- Clinical and economic outcomes for each strategy were projected annually based on age, risk profile, disease/fatality rates, vaccination status/type, time since vaccination, and unit costs and include cases of IPD and AC-NBP, deaths due to IPD and inpatient AC-NBP, life-years (LYs) and quality-adjusted LYs (QALYs), and costs of vaccination and medical treatment for IPD and AC-NBP

Model Parameters

- Model population comprised all adults aged 60-99 years (60-64y, n=49.9M; 65-74y, n=65.9M; 75-84y, n=24.2M; 85-99y, n=5.6M)^{2,3}
- Proportion of disease that is vaccine-type (VT)^{5,6} was assumed to remain the same over the modelling horizon due to low uptake of PCVs among children
- PCV13 effectiveness (VE-PCV13) was assumed to be durable for 5 years and to wane to 0% by year 16 as follows: 5% annually during years 6-10, 10% annually during years 11-15, and no effectiveness beginning in year 16^{7,8}
- VE-PPV23 vs. VT-IPD was assumed to wane to 0% by year 10¹⁰; VE-PPV23 vs. VT-NBP assumed to be 0%^{1,12}
- Utility reductions for persons with IPD, inpatient AC-NBP, and outpatient AC-NBP were 0.13, 0.13, and 0.004, respectively, in the year in which the illness occurred^{13,14}
- Medical care costs⁴ were:
 - Private/patient: bacteremia, ₹485K; meningitis, ₹705K; inpatient AC-NBP, ₹342K; outpatient AC-NBP, ₹11K
 - Govt./payer: bacteremia, ₹65K; meningitis, ₹31K; inpatient AC-NBP, ₹27K; outpatient AC-NBP, ₹3K
- Vaccination costs include vaccine price (confidential; private/patient price=1.38x govt./payer price) and administration fee (private/patient: ₹400; govt./payer: ₹0)⁴
- Vaccine uptake⁴ varied by perspective:
 - Private/patient perspective: 7.5% among all risk groups
 - Govt./payer perspective: healthy, 7.5%; at-risk, 15%; high-risk, 30%
- Other model inputs are summarized in Table 1

Analyses

- Cost-effectiveness was calculated in terms of cost per QALY gained and evaluated using a 3x GDP per capita willingness-to-pay (WTP) threshold
- Benefits and costs were discounted at 5% annually
- Analyses were conducted from two alternative perspectives:
 - Private/patient: costs borne by patients utilizing private facilities
 - Govt./payer: costs borne by govt. for management of pneumonia in govt. facilities
- Probabilistic sensitivity analyses (PSA; 1,000 replications) were also conducted to account for uncertainty surrounding estimates of key model parameters

Table 1: Base case model input values, by age and risk

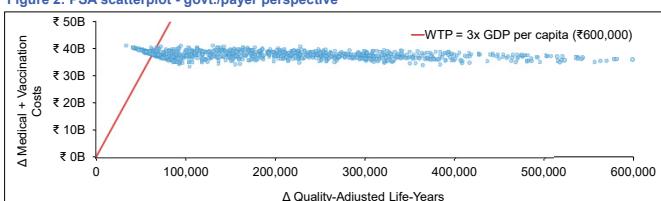
	50-64 Years		65-74 Years		75-84 Years		85-99 Years					
	Healthy	At-Risk	Healthy	At-Risk	Healthy	At-Risk	High-Risk	Healthy	At-Risk	High-Risk		
Incidence of bacteremia (per 100K) ^{15,16}	2.1	6.1	17.9	3.8	10.2	24.9	6.4	15.9	24.4	9.1	21.9	22.9
Incidence of meningitis (per 100K) ^{15,16}	0.1	0.4	1.2	0.2	0.7	1.6	0.4	1.0	1.6	0.6	1.4	1.5
Incidence of inpatient AC-NBP (per 100K) ^{15,17}	90	434	1,208	204	905	2,005	826	2,308	3,384	1,440	3,709	4,763
Incidence of outpatient AC-NBP (per 100K) ^{17,18}	250	902	1,690	550	1,661	2,255	848	2,560	3,475	1,180	3,564	4,837
General population mortality ¹⁹	1.0	1.4	1.9	2.3	3.5	4.5	4.7	6.9	9.2	9.6	14.3	18.9
Case-fatality rate for IPD (per 100) ¹⁶	6.1	24.3	37.7	10.1	31.6	42.9	16.7	40.1	44.3	27.4	48.5	38.4
Case-fatality rate for inpatient AC-NBP (per 100) ²⁰	1.0	2.5	5.4	2.8	4.6	6.8	6.7	8.4	9.1	7.9	8.4	11.0
Yr. 1 VE-PCV13 vs. VT-IPD (%) ^{8,21,22}	79.2	79.2	63.3	75.0	75.0	60.0	75.0	60.0	75.0	75.0	60.0	
Yr. 1 VE-PCV13 vs. VT-NBP (%) ^{8,21,22}	51.3	51.3	41.1	45.0	45.0	36.0	45.0	45.0	36.0	45.0	36.0	
Yr. 1 VE-PPV23 vs. VT-IPD (%) ^{10,23}	58.3	32.3	16.8	55.7	30.9	16.1	50.8	28.1	14.6	37.9	20.5	10.6
General population health utility ²⁴	0.93	0.72	0.69	0.93	0.73	0.71	0.89	0.68	0.66	0.82	0.60	0.56

RESULTS

- From the private/patient perspective, use of PCV13—in lieu of PPV23—was cost saving (costs lower by ₹2.7 billion), making PCV13 the dominant strategy (Table 2)
- From the govt./payer perspective, use of PCV13 vs. PPV23 increased total costs (by ₹37 billion) and total QALYs (by 90K), yielding an ICER of ₹417,458 (Table 3)
- In PSA, 70.2% of replications were cost saving (in the southeast quadrant) from the private/patient perspective (Figure 1); 92.1% of replications were below 3x GDP per capita (cost/QALY < ₹600,000) from the govt./payer perspective (Figure 2)

Table 2: Base case results - private/patient perspective

	PCV13	PPV23	Difference
No. of cases			
IPD	276,489	281,089	-4,600
Inpatient AC-NBP	35,449,908	35,558,702	-108,795
Outpatient AC-NBP	39,630,365	39,764,525	-134,160
No. of deaths	2,921,458	2,930,922	-9,464
No. of LYs/QALYs (discounted)			
LYs	1,332,467,431	1,332,424,680	42,751
QALYs	1,018,920,718	1,018,881,355	39,363
Costs (millions)			
Medical care	₹ 7,390,279	₹ 7,420,861	-₹30,583
Vaccination	₹ 47,490	₹ 19,651	₹27,839
Total costs (Medical + Vaccination)	₹ 7,437,769	₹ 7,440,512	-₹2,744
Cost per LY	--	--	Dominant
Cost per QALY	--	--	Dominant


Table 3: Base case results - govt./payer perspective

	PCV13	PPV23	Difference
No. cases			
IPD	269,028	279,668	-10,640
Inpatient AC-NBP	35,316,793	35,558,868	-242,075
Outpatient AC-NBP	39,475,214	39,764,702	-289,488
No. deaths	2,908,182	2,930,382	-22,199
No. LYs/QALYs (discounted)			
LYs	1,332,528,784	1,332,428,027	100,758
QALYs	1,018,973,984	1,018,883,678	90,306
Costs (millions)			
Medical care	₹655,327	₹661,610	-₹6,284
Vaccination	₹59,590	₹15,607	₹43,983
Total costs (medical + vaccination)	₹714,916	₹677,217	₹37,699
Cost per LY	--	--	₹374,156
Cost per QALY	--	--	₹417,458

Figure 1: PSA scatterplot - private/patient perspective

Figure 2: PSA scatterplot - govt./payer perspective

CONCLUSIONS

- CEAs suggest that PCV13 use in lieu of PPV23 among adults aged ≥ 60 years would be cost saving from the private/patient perspective and would be cost-effective (under a 3x GDP per capita threshold) from the govt./payer perspective
- Considering the burden of pneumococcal disease and current pneumococcal vaccine coverage, further evaluation of adult pneumococcal vaccination strategies in India is warranted

References:	
1.	Dhar et al. <i>Lung India</i> . 2020;37(Supplement):S19-32.
2.	World Population Review.
3.	National Commission on Population.
4.	Smith et al. <i>BMJ</i> . 2018;362:k1407.
5.	Jayaram et al. <i>Microbiol Immunol</i> . 2018;62(5):736-742.
6.	Pfizer India. Data on File.
7.	Bonten et al. <i>NEJM</i> . 2015;372(12):1114-1125.
8.	Mangen et al. <i>Eur Respir J</i> . 2015;46(5):1407-1416.
9.	Patterson et al. <i>Trials in Vaccinology</i> . 2016;9:96.
10.	Simberk et al. <i>Economics Medicine</i> . 2016;4:42-50.
11.	Smith et al. <i>Am J Prev Med</i> . 2019;44(4):373-381.
12.	Simberk et al. <i>NEJM</i> . 1986;315(21):1318-1327.
13.	Klugman et al. <i>BMJ Infect Dis</i> . 2017;1(7):208.
14.	Mangen et al. <i>BMJ Infect Dis</i> . 2018;1(4):182-188.
15.	Melegaro et al. <i>Vaccine</i> . 2004;22(31):4203-4212.
16.	Peltola et al. <i>Clin Infect Dis</i> . 2019;68(11):1831-1838.
17.	Weych et al. <i>BMC Health Serv Res</i> . 2017;17(1):61.
18.	Nelson et al. <i>Vaccine</i> . 2008;26(38):4947-4954.
19.	Office of the Registrar General & Census Commissioner. Data on File.
20.	Smith et al. <i>Respir Med</i> . 2021;183:106476.
21.	Klugman et al. <i>NEJM</i> . 2003;349(14):1314-1348.
22.	French et al. <i>NEJM</i> . 2010;362(9):812-822.
23.	van Hoek et al. <i>J Infect</i> . 2012;65(1):1-24.
24.	Ara & Brazier. <i>Value Health</i> . 2011;14(4):539-545.

Disclosures: Namrata Kulkarni and Santosh Taur are employees of Pfizer Ltd. Liping Huang is an employee of Pfizer Inc. Dhwani Hariharan and Mark Atwood are employees of PAI, which received funding from Pfizer Inc. for this study.

For more information please contact:
Liping Huang, M.D., M.A., M.S.
Global Value and Evidence, Pfizer Inc.
Collegeville, PA, USA
Email: liping.huang@pfizer.com
www.pfizer.com

