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Introduction

Type 2 diabetes (T2D) is highly heterogeneous in its phenotypes.
Although data-driven subgroups are gaining attention, the added
value and optimal subgrouping strategy remain understudied.

Research questions

From a pharmacoeconomic perspective

(for aiding reimbursement decision-making in clinical practice)
1. How much does it help having diabetes subgroups?

2. What might be the optimal subgrouping strategy?

Methods

Data: 2,000 randomly selected newly diagnosed T2D from CPRD

(UK Primary care data) Current  Target
HbA1c (%) 7.5 7
.  BMI (kg/m”2)  30.9 25
LDL (mmol/L) 2.5 1.4/1.8/2.6/3

Model: UKPDS Outcomes Model

Comparison: Care-as-Usual vs. Treat-to-Guideline-Based Target
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Subgrouping strategies: (US Healthcare perspective)
Strategy Information implicitly Learning
contained
K-means? Baseline only Unsupervised
Rule-based? +Endpoint, expert opinion Supervisec
ADVANCE-based* +Endpoint Supervisec
Latent class-based® +HbA1c follow-up Unsupervised +
Supervised

Discussion & Conclusions

Resu I ts Mappings between different subgrouping strategies
K-means? (with K-means subgroups tracked)

SIDD IROD MARD |
Rule-based?
HbAlc & SCORE
Guideline cutoffs | ow Middle -

ADVANCE-based
Prediction model*

Risk are divided Low Middle _

into tertiles

Latent class-based

HbAlc trajectory> + Stable

ImBEoVing

Prediction model

Fluctuating

10 Years hypothetical intensive treatment (HbAlc+LDL+BMI)

Subgroup Count (Proportion) Annual Cost-Effective Price [$CEF"]*EEF’ (Diff to min)
HTx K-Means i
MARD 804 (42.7%) . i 624 (Ref)
SIDD 371 (18.55%) 'i 876 (252)
IROD 775 (38.75%) | - 1227 (603)
Rule-based |
Low HbA1c and risk 634 (31.7%) . i 096 (Ref)
Middle HbA1c and risk 1123 (56.15%) i' 941 (346)
High HbA1c and risk 243 (12.15%) | - 1540 (945)
ADVANCE Model-based |
Low risk 667 (33.35%) . i 632 (Ref)
Middle risk 666 (33.3%) i- 932 (300)
High risk 667 (33.35%) i - 1150 (518)
HbA1c Latent Class-based i
Fluctuating 22 (1.1%) - i 853 (Ref)
Stable 1789 (89.45%) 'i 879 (26)
Improving 189 (9.45%) i - 1152 (299)
| | |
: Homogeneous T2D ) 200 1000 1500
I (when no subgrouping strategy is applied) ) Lower CEP Higher CEP

*The CEP referred to here is the annualized MCEP, a straightforward indicator.
If a treatment costs less than the CEP in a year, then it is considered cost-effective.

 Mappings between different subgrouping strategies vary = necessity and importance of carefully evaluating subgrouping strategies
* Subgroup-specific CEP differs substantially from CEP of homogenous T2D - Subgroups support priority setting and resource allocation
* Rule-based risk-driven subgroups captured greatest discrimination in CEP - appear optimal from a pharmacoeconomic perspective

 The lesser discrimination of data-driven latent class-based subgroups might be attributed to their current inability to exclude treatment
effects, thereby mixing mild individuals with severe individuals who have good control.
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