

Health Economic Modeling in R: A Hands-on Introduction

Presented by:

Felicity Lamrock, PhD Gianluca Baio, PhD Howard Thom, PhD, MSc Rose Hart, PhD

ISPOR Europe 2023 | Sunday, 12 November 2023

ISPOR

Copyright, Trademark, and Confidentiality

This course was developed by ISPOR for members and other interested parties. Unless referenced, it is the property of ISPOR and confidential. No part of this document may be disclosed or repurposed in any manner without the prior written consent of ISPOR – The professional society for health economics and outcomes research.

Welcome! 12 November 2023: Health Economic Modeling in R: A Hands-on Introduction LEVEL - Introductory TRACK - Economic Evaluation LENGTH - 4 Hours (with coffee break!) PREREQUISITE: Familiarity with R coding is not required for attendance, however it would be beneficial and background material can be provided to those with little R experience. Attendees will require a laptop with RStudio (v1.1.0 or higher) and R (v3.5.0 or higher) downloaded and installed

Agenda

08:00 - 08:05	08:00 – 08:05 Welcome and Introductions		
08:05 - 09:00	05 – 09:00 Introduction to R for Health Economics using BCEA		
09:00 – 10:00 Discrete time Markov models (deterministic)		Felicity Lamrock	
Coffee Break			
10:15 – 11:15	Discrete time Markov models (probabilistic)	Howard Thom	
11:15 – 12:00	Additional Useful Packages for R Modelling	Rose Hart	

Introduction to R for Health Economics using BCEAC **Gianluca Baio** Department of Statistical Science | University College London ☑ g.baio@ucl.ac.uk Powered by Follow our auarto & departmental Alebaio social media **O** https://github.com/giabaio accounts 🈏 🛅 https://github.com/StatisticsHealthEconomics 0 🄰 @gianlubaio Health Economic Modeling in R: A Hands-on Introduction check out our departmental podcast "Random ISPOR Europe 2022, Copenhagen, Denmark Talks" on **¹UC** Soundcloud! 12 November 2023 © Gianluca Baio (UCL) | 🎔 🖓 🖾 🔮 | Intro to R in HTA & BCEA | ISPOR Europe 2023 | 12 Nov 2023

Disclaimer

Manuela Joore @ManuelaJoore · Follow \mathbb{X} Best opening sentence #ISPOREurope from Gianluca Baio: "statisticians should rule the world and Bayesian statisticians should rule all statisticians" 4:52 PM · Nov 4, 2019 (🤎 16 🌻 Reply 🖉 Copy link Read 2 replies ...Just so you know what you're about to get into... 😉 © Gianluca Baio (UCL) | 🕊 🔿 🕿 🌒 | Intro to R in HTA & <u>BCEA</u> | <u>ISPOR Europe 2023</u> | <u>12 Nov 2023</u>

Health technology assessment (HTA)

For each module, we may need/use different/specific packages! (the "R-HTA-verse"?) BCEA Assesses the impact of uncertainty (eg in parameters or model structure) on the economic results Uncertainty analysis Mandatory in many jurisdictions (including NICE, in the UK) • Fundamentally Bayesian! BCEA Statistical Decision Economic model model analysis Combines the parameters to obtain a population average measure for costs and clinical benefits Summarises the economic model by computing suitable measures of "cost-effectiveness" Estimates relevant population parameters θ Varies with the type of available data (& statistical approach!) Dictates the best course of actions, given current evidence Varies with the type of available data & statistical model used • Standardised process © Gianluca Baio (UCL) | 🕊 🔿 🕿 🌒 | Intro to R in HTA & <u>BCEA</u> | <u>ISPOR Europe 2023</u> | <u>12 Nov 2023</u>

- Very large community of contributors basically you can find code/packages to do any statistical analysis you need
- Open source and free

© Gianluca Baio (UCL) | 🎔 🖓 🖾 🔮 | Intro to R in HTA & <u>BCEA</u> | <u>ISPOR Europe 2023</u> | <u>12 Nov 2023</u>

R & HTA

What is R?

- R is a very powerful **statistical software**
 - Specifically designed for statistical analysis
 - Very large community of contributors basically you can find code/packages to do any statistical analysis you need
 - Open source and free

Why use R?

- Everything can be (and almost invariably is) scripted
- This helps with:
 - Reproducibility
 - Sharing your work with colleagues
 - Reusing templates for "similar" projects
 - "Transparency"!
- Fantastic graphical capability
 - Especially with new tidyverse packages (ggplot2)
- Generally fit for purpose
 - You **need** advanced tools for many (most??) of the models you do...

© Gianluca Baio (UCL) | 🕊 🔿 🕿 🌒 | Intro to R in HTA & <u>BCEA</u> | <u>ISPOR Europe 2023</u> | <u>12 Nov 2023</u>

But...

"*Transparency is in the eye of the beholder*" (Andy Briggs at the R-HTA workshop – October 2020)

© Gianluca Baio (UCL) | ♥ O ■ O | Intro to R in HTA & BCEA | ISPOR Europe 2023 | 12 Nov 2023

Tarto, o				
	_			
There is an entry cost				
There is an entry cost And more importantly	, the effort goes hand in hand w	ith sophistication in the statist	cical modelling associated wit	h the economic evaluation!
There is an entry cost And more importantly	, the effort goes hand in hand w	ith sophistication in the statist	cical modelling associated wit	h the economic evaluation!
There is an entry cost And more importantly	, the effort goes hand in hand w	ith sophistication in the statist	cical modelling associated wit	h the economic evaluation!
There is an entry cost And more importantly	, the effort goes hand in hand w	ith sophistication in the statist	cical modelling associated wit	h the economic evaluation!

© Gianluca Baio (UCL) | 🎔 🎧 🗷 🔮 | Intro to R in HTA & <u>BCEA</u> | <u>ISPOR Europe 2023</u> | <u>12 Nov 2023</u>

A R package for (Bayesian) cost-effectiveness analysis

BCEA and its use directly in R are designed with these objectives in mind

Checking the model assumptions

- Do we mean what we mean (eg in terms of PSA simulations)?...
- Simulation error (especially, **but not only**, for a Bayesian approach)
- Produce the base-case economic evaluation
 - What's the most cost-effective intervention, given current evidence?
 - Cost-effectiveness plane, Expected Incremental Benefit (as a function of k), etc

Perform uncertainty analysis

- Standard PSA (mandatory): Cost-effectiveness Plane, CEAC, etc
- Fairly easy (but not always used): CEAF
- More advanced/"too difficult" (rarely used): EVP(P)I/EVSI

Standardised reporting

- Graphical tools (use **excellent** R facilities)
- Embed code in structured reports (docx/pdf)

© Gianluca Baio (UCL) | 🕊 🗘 🖾 🍳 | Intro to R in HTA & <u>BCEA</u> | <u>ISPOR Europe 2023</u> | <u>12 Nov 2023</u>

ALICI

Using BCEA to summarise outputs of an economic model

© Gianluca Baio (UCL) | 🕊 🔿 🕿 🌒 | Intro to R in HTA & <u>BCEA</u> | <u>ISPOR Europe 2023</u> | <u>12 Nov 2023</u>

Inst	allation Using	g BCEA Show. Me	e. The. Data!	Economic model	Cost & effects
1 c	bind(eff,cost)	%>% as tibble(.nam	ne repair="uni	versal") # en:	sures that the columns are na
# A t	ibble: 1,000 ×	4			
St	atus.Quo1 Va	ccination2 Stat	us.Quo3 Va	ccination4	
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
1	-0.00105	-0.000899	10.4	16.3	
2	-0.000884	-0.000732	5.83	9.37	
3	-0.000890	-0.000698	5.78	15.9	
4	-0.00164	-0.00114	12.2	18.7	
	-0.00135	-0.000957	9.79	16.5	
5		-0.000936	6.56	9.69	
5 6	-0.00143				
5 6 7	-0.00143	-0.00105	8.45	11.3	
5 6 7 8	-0.00143 -0.000960 -0.00181	-0.00105 -0.00139	8.45 6.76	11.3 9.99	
5 6 7 8 9	-0.00143 -0.000960 -0.00181 -0.000842	-0.00105 -0.00139 -0.000556	8.45 6.76 3.60	11.3 9.99 10.1	

© Gianluca Baio (UCL) | ♥ O ■ O | Intro to R in HTA & BCEA | ISPOR Europe 2023 | 12 Nov 2023

16

15

AUCI

How does BCEA work?

• At this point, we are ready to call the function bcea that runs the economic analysis, for example something like

1 treats = c("Status quo","Vaccination")
2 m = bcea(e=eff,c=cost,ref=2,interventions=treats,Kmax=50000)

- The inputs to the function are
 - eff: a **matrix** containing the simulations for the clinical benefits (that is $n_{
 m sim} imes n_{
 m int}$ values)
 - $ext{cost:}$ a **matrix** containing the simulations for the costs (that is $n_{ ext{sim}} imes n_{ ext{int}}$ values)
 - ref: an indication of which intervention is to be taken as reference (default: the intervention in the first column of eff or cost)
 - interventions: a vector of labels for the interventions being compared
 - Kmax: the maximum value of k, the parameter of willingness to pay
- The output is an object m containing several elements

1] "n_sim" 0] "ib" 9] "ref"	"n_comparators" "eib" "comp"	"n_comparisons" "kstar" "step"	"delta_e" "best" "interventions"	"delta_c" "U" "e"	"ICER" "vi" "c"	"Kmax" "Ustar"	"k" "ol"	"ceac" ^ "evi"
		© Gianluca Baio (UCL)	🗲 🖸 🖻 🖸 Intro t	co R in HTA & <u>BCEA</u>	ISPOR Europe 2023	12 Nov 2023		

How does BCEA work?

1 # The 'summary'	"method" produces a tabular output	
2 Summary (m)		
Cost-effectiveness a	nalysis summary	
Reference interventi	on: Vaccination	
Comparator intervent	ion: Status quo	
Optimal decision: ch	oose Status quo for k < 20100 and Vaccination for k >= 20100	
Analysis for willing	ness to pay parameter k = 25000	
Expected	net benefit	
Status quo Vaccipation	-36.054	
vacorna cron	5.625	
·····	EIB CEAC ICER	

Specialised plots

Exporting graphical output

ALIC

• R has excellent graphical facilities and the graphs produced by BCEA can be easily exported to many different formats

© Gianluca Baio (UCL) | 🕊 🗘 💌 🍳 | Intro to R in HTA & <u>BCEA</u> | <u>ISPOR Europe 2023</u> | <u>12 Nov 2023</u>

Advanced use of BCEA

© Gianluca Baio (UCL) | 🕊 🗘 💌 🍳 | Intro to R in HTA & <u>BCEA</u> | <u>ISPOR Europe 2023</u> | <u>12 Nov 2023</u>

Multiple treatment comparisons

Probabilistic "depression model"

- Fictional model comparing antidepressants to cognitive behaviour therapy (CBT) and no treatment in people with depression
- Statistical modelling based on evidence synthesis
 - Benefits: based on QALYs
 - Costs: associated with treatments and various resources use
- Economic modelling: two matrices with relevant population summaries
 - effects
 - costs

• NB: The details of the actual modelling are *not* important for the purposes of demonstrating the example...

© Gianluca Baio (UCL) | ♥ O ■ O | Intro to R in HTA & BCEA | ISPOR Europe 2023 | 12 Nov 2023

Multiple treatment comparisons

Multiple treatment comparisons

ALICI

Probabilistic "depression model"

f f f f wiltiple treatment comparison i depression.multi.ce.depression.bcce)
d f g beinised plot multi.ce.depression.bcce)
s control depression.multi.ce.depression.bcce)
s control depression.bcce)
s

Multiple treatment comparisons

Multiple treatment comparisons

i

	BCEAweb
•	 Inspired by similar projects – eg SAVI Genete a und interfere to une RCFA without over consistent P (consume basing it installed on unus consultant)
	 Create a web interface to use BCEA without even opening R (or even having it installed on your computer;)

Typical work flow

Design the economic model (eg Markov model, decision tree, ...)

2 Run the statistical analysis to estimate the quantities of interest (eg survival analysis, evidence synthesis, ...)

8 Run the economic model and obtain "PSA samples"

Upload "PSA samples", including values for (e,c) to <code>BCEAweb</code>

Use BCEA in the background to do **all** the economic analysis

Create reports that can be used as the basis for papers, reimbursement files, ...

© Gianluca Baio (UCL) | 🕊 🗘 🖾 🍳 | Intro to R in HTA & <u>BCEA</u> | <u>ISPOR Europe 2023</u> | <u>12 Nov 2023</u>

© Gianluca Baio (UCL) | ♥ O ■ O | Intro to R in HTA & BCEA | ISPOR Europe 2023 | 12 Nov 2023

1

Discrete Time Markov Models - deterministic

Dr Felicity Lamrock

Mathematical Sciences Research Centre

f.lamrock@qub.ac.uk

QUEEN'S UNIVERSITY BELFAST **Overview** Markov modelling Smoking cessation Markov model • Cohort simulation • Costs/QALYs

- Coding the smoking cessation Markov model in R ٠
- Practical

٠

Discounting

Costs and benefits that occur in the future are discounted to reflect society's rate of time preference

E.G. UK discount in first year is 1, second year is 1.035^{-1} , third is 1.035^{-2} , ..., fifth is 1.035^{-4}

But if a cycle is 6 months.... 1 for first two cycles, 1.035^{-1} for third and fourth cycle, ..., 1.035^{-4} for ninth and 10th cycle

QUEEN'S UNIVERSITY BELFAST

Contents of array

Run the previous code ensuring you have filled in the *transition_matrices* array

Now look at elements of the array

<pre>> transition_mature , , Smoking</pre>	rices		
SoC with website SoC	Smoking 0.85 0.88	Not	smoking 0.08 0.08
, , Not smoking			
SoC with website SoC	Smoking 0.15 0.12	Not	smoking 0.92 0.92

```
State OALYS
# Now define the QALYS associated with the states per cycle
# There is one for each state
# Store in an NA array and then fill in below
state_galys <- array(dim = c(n_states), dimnames = list(state_names))
# QALY associated with 1 - year in the smoking state is 0.95
# Divide by 2 as cycle length is 6 months
state_galys["Smoking"] <- 0.95 / 2
# QALY associated with 1 - year in the not smoking state is 1
# Again divide by 2 as cycle length is 6 months
state_galys["Not smoking"] <- 1.0 / 2</pre>
```

QUEEN'S UNIVERSITY BELFAST

EXAMPLE Constitution Final Section Final Sectio

```
Every every
```



```
35
```


Overview Markov modelling Smoking cessation Markov model Cohort simulation Costs/QALYs Coding the smoking cessation Markov model in R Practical

Overview Markov modelling Smoking cessation Markov model Cohort simulation Costs/QALYs Coding the smoking cessation Markov model in R Practical

Outline

• We will adapt the processes and code from the previous session to do the following in probabilistic analysis

3

- Generating transition matrices
- Generating costs and QALYs
- Markov cohort simulation
- Analysing results

Population Health Sciences

bristol.ac.uk

Probabilistic analysis – transition matrices

• Transition matrix for SoC + website was previously assumed known exactly as

 $\begin{pmatrix} 0.85 & 0.15 \\ 0.08 & 0.92 \end{pmatrix}$

- In reality, we might estimate this from study data.
- For example, a study of two cohorts of 100 patients followed over 6 months starting in smoking and non-smoking states and receiving standard of care + website.

SoC + website	Smoking at 6 months	Not smoking at 6 months
Smoking at baseline	85	15
Not smoking at baseline	8	92
pulation Health Sciences	5	b

Probabilistic analysis – transition matrices

• Each row of the transition matrix for SoC + website is therefore represented by a beta distribution

(beta (85, 15) beta (8, 92)

• Similarly, the SoC transition matrix is represented by

 $\begin{pmatrix} beta(88, 12) \\ beta(8, 92) \end{pmatrix}$

SoC alone	Smoking at 6 months	Not smoking at 6 months	Distribution
Smoking at baseline	88	12	Beta (88, 12)
Not smoking at baseline	8	92	Beta (8,92)
		7	bristol a
ulation Health Sciences		1	DISIOI.a

Probabilistic analysis – beta distribution in R

• The rbeta() function takes a number of samples 'n' and its α and β parameters

	SoC + website	Smoking at 6 months	Not smoking at 6 months	Distribution
	Smoking at baseline	85	15	Beta (85,15)
	Not smoking at baseline	8	92	Beta (8,92)
	<pre>rbeta(n = 10, 85, 1 [1] 0.7970600 0.8053 [8] 0.8143802 0.8818 rbeta(n = 10, 8, 92 [1] 0.05580082 0.086 [8] 0.08395457 0.062</pre>	15) 3360 0.8801466 0.9074 3394 0.8143785 2) 538050 0.07016425 0.0 294023 0.09924210	4958 0.8868830 0.762 05184869 0.10193435	5788 0.8323798 0.04942523 0.08096863
Pop	ulation Health Sciences		8	bristol.ac

Open the file

markov_smoking_probabilistic.R × • If you haven't already, use R or Rstudio to open the file labelled "markov_smoking_probabilistic.R" 8 # Set a random number seed so results are reproducible Note the set.seed() ٠ This ensures results are same each • time the model is run, making the 21 state_names <- c("Smoking", "Not smoking")
2
23 # Define the number of cycles
24 # This is 10 as the time horizon is 5 years and cycle length is 6 months
25 # The code will work for any even n_cycles (need to change the discounting
26 # an odd number of cycles is desired)
27 n_cycles <- 10
28</pre> analysis reproducible bristol.ac.uk Population Health Sciences 9 9

Popula

Basic model spe	cification	
<pre># Define the number and names of treatments # These are Standard of Care with website # and Standard of Care without website n_treatments <- 2 treatment_names <- c("SoC with website</pre>	ebsite", "SoC")	
<pre># Define the number and names of states of the # This is two and they are "Smoking" and "Not s n_states <- 2 state_names <- c("Smoking", "Not</pre>	model moking" smoking")	
# Define the number of cycles # This is 10 as the time horizon is 5 years and cy # The code will work for any even n.cycles (need # an odd number of cycles is desired) n_cycles <- 10	cle length is 6 months I to change the discounting code if	
<pre># Define simulation parameters # This is the number of samples to use n_samples <- 1000</pre>		
ation Health Sciences	10	bristol.ac.uk

 Run the code up to line 64, ensuring you have filled in the transition matrices array Look at elements of the array For example, first sampled transition matrix for standard of care: transition_matrices["SoC", 1, ,] Smoking Not smoking Smoking 0.8568441 0.1431559 Not smoking 0.1053515 0.8946485 	University of BRISTOL	Contents of array	/?	
<pre>> transition_matrices["SoC", 1, ,]</pre>	 Run the code up transition matri Look at elementer For example, fir 	to line 64, ensuring yo ces array s of the array st sampled transition m	ou have filled in t natrix for standar	the rd of care:
Smoking Not smoking Smoking 0.8568441 0.1431559 Not smoking 0.1053515 0.8946485	> trans	ition_matrices["	SoC", 1, ,]	
Smoking 0.8568441 0.1431559 Not smoking 0.1053515 0.8946485			ot smoking	
Not smoking 0.1053515 0.8946485	Smoking	0.8568441	0.1431559	
	Not smo	king 0.1053515	0.8946485	
Population Health Sciences 13 bristol.ac.uk	Population Health Sciences	13		bristol.ac.uk

University of BRISTOL		
Exercise 1		
 a) Run the code as far as line 64 b) One sample of the transition by calling transition_matri Use the colMeans() function probabilities from Smoking to 5 c) What about the transition provide the	to fill in the transition matric probabilities from Smoking o ces["SoC with websit on to compare the average ov Smoking and Not smoking on robabilities from not smoking	ces array. on SoC with website are given te", 1, "Smoking",] ver all samples of the transition SoC with website and SoC. ? Do they differ between SoC
Population Health Sciences	15	bristol.ac.uk
		15

Reminder: Cohort Simulation

• Cohort vector π at time $t(\pi_t)$ is the cohort vector at the previous time point (π_{t-1}) multiplied by the probability transition matrix P

Loop over tre	atments	•	
{			
Loo	p over samples		
{			
	Loop over cycles		
	{ Undato col	vortvortor	
	Opuate cor	$\pi_t = \pi_{t-1} P$	
		or specifically	
	$(\pi_{Smoking,t})$	$(\pi_{Not \ smoking,t}) = (\pi_{Smoking,t-1}, \pi_{Not \ smoking,t-1})$	ng,t-1)P
	}		
	1. Calculate cycle cos	ts and QALYs for this sample	
	2. Calculate total cos	ts and QALYs for this sample	
}			
}			
Population Health Sc	iences	19	bristol.ac.uk

	Universe BRIS	sity of TOL	Core loop	
Loop	over the treatm	ent options		
or (i_treatment	in 1:n_treat	ments)	
	# Loop ove	r the samples		
	for (i_	sample in 1:n	_samples)	
	{			
		# Loop over the c	ycles	
		# Cycle 1 is alread	ly defined so only need to update cycles 2:n_cycles	
		for (1_cycle	in 2:n_cycles)	
		1		
		# 101	cohort vectors i treatment i s	ample i cycle l <-
			cohort vectors[i treatment is	sample, 1_{cycle} , $1 < \infty$
			transition matrices[i treatment	i sample]
		}	}	-,oump.c, ,]
		1. Calculate cycle	costs and QALYs for this sample	
		2. Calculate total	costs and QALYs for this sample	
	}		·	

#1000 0	vor the treate	ant options	
for (i	_treatmen	t in 1:n_treatments)	
[
	# Loop ov	er the samples	
	tor (1_	_sample in 1:n_samples)	
	ĩ	# Loop over the cycles	
		# Cycle 1 is already defined so only need to undate cycles 2:n_cycles	
		for (i_cycle in 2:n_cycles)	
		{	
		# Multiply previous cycle's cohort vector by transition mat	rix
		<pre>cohort_vectors[i_treatment, i_s</pre>	sample, i_cycle,] <-
		<pre>cohort_vectors[i_treatment, i_s</pre>	sample, i_cycle-1,] %*%
		transition_matrices[i_treatment	z, ı_sample, ,]
		} } 1. Calculate cycle costs and OALVs for this sample	
		2. Calculate total costs and QALYs for this sample	
	}		This will be implemented next
			This will be implemented next

University of BRISTOL

Population Health Sciences

Probabilistic sensitivity analysis – costs and QALYs

- The QALYs associated with 1 year in the smoking state are now normally distributed as Normal(mean = 0.95, sd = 0.01)
 - We divide the above by 2 to get QALYs for one 6-month cycle in the smoking state.
- The QALYs associated with 1 year in the non-smoking state remain fixed at 1.00 (perfect health)

23

• Cost of website also remains fixed as £50

th the states per cycle
II SIALE
below
<pre>c(n_samples, n_states), dimnames = list(NULL,</pre>
moking state is Normal(mean=0.95, SD=0.01)
ns rnorm(n_samples, mean=0.95, sd=0.01) / 2
ot smoking state is 1 (no upcortainty)
or smoking state is I (no uncertainty)
months

bristol.ac.uk


```
University of
BRISTOL
                            Checking state costs and QALYs
> state qalys[1:5, "Smoking"]
[1] 0.4728097 0.4751482 0.4762728 0.4768340 0.4711733
> state qalys[1:5, "Not smoking"]
[1] 0.5 0.5 0.5 0.5 0.5
> state costs[1:5, "Smoking"]
[1] 0 0 0 0 0
> state costs[1:5, "Not smoking"]
[1] 0 0 0 0 0

    State QALYs in smoking state are uncertain but centred around 0.475

  QALYs in not smoking state are 0.5 (6 month cycle)
   And state costs are always zero
                                                                    bristol.ac.uk
Population Health Sciences
                                        26
```


Treatment costs

Define the treatment costs # One for each sample and each treatment # Treatment costs are actually fixed but this allows flexibility if we # want to include uncertainty/randomness in the cost treatment_costs <- array(dim = c(n_treatments, n_samples), dimnames = list(treatment_names, NULL))

Cost of the smoking cessation website is a one-off subscription fee of £50
treatment_costs["SoC with website",] <- 50
Zero cost for standard of care
treatment_costs["SoC",] <- 0</pre>

Population Health Sciences

27

bristol.ac.uk

University of BRISTOL	Calculating cycle costs an	Id QALYs		
 For each treatment and each sample, we use the cohort_vectors[] to calculate costs and QALYs associated with each cycle 				
# Now use the cohort vectors to c cycle_costs[i_treatmen %*% state_costs[i_samp	alculate the total costs for each cycle :, i_sample,] <- cohort_vectors[i_t e,]	reatment, i_sample, ,]		
# And total QALYs for each cycle cycle_qalys[i_treatmen %*% state_qalys[i_samp	, i_sample,] <- cohort_vectors[i_t e,]	reatment, i_sample, ,]		
Population Health Sciences	30	bristol.ac.uk		

University of BRISTOL	Іоор	
<pre># Loop over the treatment options for (i_treatment in 1:n_treatments) { # Loop over the samples for (i_sample in 1:n_samples) { # Loop over the cycles # Cycle 1 is already defined so only need to update cy for (i_cycle in 2:n_cycles) { # Multiply previous cycle's cohort vec # i_e_pi_eni_(j-1)*P cohort_vectors[i_treatmenn</pre>	ycles 2:n_cycles ctor by transition matrix ht, i_sample, i_cycle,] s[i_treatment, i_sample, rices[i_treatment, i_sam eatment, i_sample, ,] %*% eatment, i_sample, ,] %*%	<- i_cycle-1,] %*% ple, ,] state_costs[i_sample,] state_qalys[i_sample,] Implement this final step in R
Population Health Sciences	31	bristol.ac.uk
		31

University of BRISTOL	Calculating total costs an	nd QALYs
<pre># Combine the cycle_costs an # Apply the discount factor # (1 in first year, 1_035 in sec # Each year acounts for two of total_costs[i_treatu + cycle_costs[i_treatu 1)), each = 2)</pre>	nd treatment_costs to get total costs cond, 1_035^2 in third, and so on) cycles so need to repeat the discount values nent, i_sample] <- treatment_costs[i atment, i_sample,] %*% (1 / 1.035)/	i_treatment, i_sample] ^rep(c(0:(n_cycles / 2-
# Combine the cycle_qalys to # Apply the discount factor # (1 in first year, 1_035 in sec # Each year accounts for two total_qalys[i_treat %*% (1 / 1.035)^rep	<pre>get total qalys cond, 1_035^2 in third, and so on) cycles so need to repeat the discount values ment, i_sample] <- cycle_qalys[i_tre (c(0:(n_cycles / 2-1)), each = 2)</pre>	eatment, i_sample,]
Note treatment costs	are added (and not discounted as only o	occur in first year)
Population Health Sciences	32	bristol.ac.uk

BRISTOL Mean	costs and effects	
<pre># Average costs # These are £50 on the website and 0 on sta average_costs <- rowMeans(tot # Average effects (in QALY units) # These are slightly higher on the website a average_effects <- rowMeans(t</pre>	andard of care as there are no costs ot al_costs) s higher probability of quitting smokin otal_qalys)	her than the website subscription cost g
> average costs		
SoC with website	SoC	
50	0	
> average effects		
SoC with website	SoC	
4.527508	4.514881	
• So we see that costs are highe	er on website (knew that!) bu	t that QALYs are also higher
Population Health Sciences	34	bristol.ac.uk

Incremental Cost-Effectiveness Ratio

Incremental costs and effects relative to standard of care # No uncertainty in the costs as the website cost is fixed at £50 incremental_costs <- total_costs["SoC with website",] - total_costs["SoC",] # In some samples the website leads to higher QALYs but in others it is negative # There is uncertainty as to whether the website is an improvement over SoC incremental_effects <- total_qalys["SoC with website",] - total_qalys["SoC",] # The ICER comparing Standard of care with website to standard of care # This is much lower than the £20,000 willingness-to-pay threshold indicating good value for money ICER <- mean(incremental_costs) / mean(incremental_effects) > ICER [1] 3959.624 • Website likely cost-effective Population Health Sciences

```
University of
                          Incremental net benefit
🙍 😽 BRISTOL
 incremental_net_benefit <- 20000*incremental_effects - incremental_costs</pre>
  > incremental net benefit[1:25]
   [1] -59.18312 -339.24847 -661.95402 -92.19771 160.27551
        25.20792 -205.42779 185.04276 -568.57411
                                                    58.14497
   [6]
  [11] -52.74228 143.52906 74.98032 618.18642
                                                     77.11779
  [16] -49.11706 276.05853 400.06418 507.20305 543.87674
        588.72652 -197.52688 136.89929 407.32936 793.21667
   [21]
  This is sometimes positive and sometimes negative
 •

    Need to look at the average to get a clearer picture

 > average_inb <- mean(incremental_net_benefit)</pre>
 > average_inb
 [1] 202.5492
   Positive so expected net benefit higher on website than on standard of care
                                                                    bristol.ac.uk
Population Health Sciences
                                        36
```


brances BCEA output Cost-effectiveness analysis summary Reference intervention: SoC with website Comparator intervention: SoC Optimal decision: choose SoC for k < and for k >= Analysis for willingness to pay parameter k = 20000 Expected net benefit SoC with website vs SoC 202.55 0.688 3959.6 Optimal intervention (max expected net benefit) for k = 20000: Soc with website EVPI %1.375 'youteton Heatth Sciences 39	University of BRISTOL		
Cost-effectiveness analysis summary Reference intervention: SoC with website Comparator intervention: SoC Optimal decision: choose SoC for k < and for k >= Analysis for willingness to pay parameter k = 20000 Expected net benefit SoC with website g0500 SoC 90298 EIB CEAC ICER SoC with website vs SoC 202.55 0.688 3959.6 Optimal intervention (max expected net benefit) for k = 20000: SoC with website EVPI 81.375 'opulation Health Sciences 39	BCEA output		
Reference intervention: SoC with website Comparator intervention: SoC Optimal decision: choose SoC for k < and for k >= Analysis for willingness to pay parameter k = 20000 Expected net benefit SoC with website 90500 SoC 90298 EIB CEAC ICER SoC with website vs SoC 202.55 0.688 3959.6 Optimal intervention (max expected net benefit) for k = 20000: SoC with website EVPI 81.375 "opulation Health Sciences 39		i e summany	
Optimal decision: choose SoC for k < and for k >= Analysis for willingness to pay parameter k = 20000 Expected net benefit SoC with website 90500 SoC 90298 EIB CEAC ICER SoC with website vs SoC 202.55 0.688 3959.6 Optimal intervention (max expected net benefit) for k = 20000: SoC with website EVPI 81.375 Population Health Sciences 39 bristol.ac	Reference intervention: Comparator intervention:	SoC with website SoC	
Analysis for willingness to pay parameter k = 20000 Expected net benefit SoC with website 90500 SoC 90298 EIB CEAC ICER SoC with website vs SoC 202.55 0.688 3959.6 Optimal intervention (max expected net benefit) for k = 20000: SoC with website EVPI 81.375 Population Health Sciences 39 bristol.ac	Optimal decision: choose	SoC for k < and for k >=	
Expected net benefit SoC with website 90500 SoC 90298 EIB CEAC ICER SoC with website vs SoC 202.55 0.688 3959.6 Optimal intervention (max expected net benefit) for k = 20000: SoC with website EVPI 81.375 Population Health Sciences 39 bristol.ac	Analysis for willingness	to pay parameter k = 20000	
EIB CEAC ICER SoC with website vs SoC 202.55 0.688 3959.6 Optimal intervention (max expected net benefit) for k = 20000: SoC with website EVPI 81.375 	Expecte SoC with website SoC	net benefit 90500 90298	
Optimal intervention (max expected net benefit) for k = 20000: SoC with website EVPI 81.375 ^opulation Health Sciences 39 bristol.ac	SoC with website vs SoC :	EIB CEAC ICER 02.55 0.688 3959.6	
EVPI 81.375 Population Health Sciences 39 bristol.ac	Optimal intervention (ma	: expected net benefit) for $k = 20000$: SoC	with website
Population Health Sciences 39 bristol.ac	EVPI 81.375		
	Population Health Sciences	39	bristol.ac.u

Cost Effectiveness Acceptability Curve

smoking_multi_ce <- multi.ce(smoking_bcea)
ceac.plot(smoking_multi_ce)</pre>

- SoC is optimal up to £3700 willingness-to-pay per QALY
- Above £4k SoC with website is optimal

bristol.ac.uk

Exercise 2 – Transitions using two beta distributions

```
# Assume that people have a 2/100 probability of dying in the smoking state
# and a 1/100 probability of dying in the non-smoking state.
probability_of_death_smoking <- rbeta(n_samples, 2, 98)
probability_of_death_not_smoking <- rbeta(n_samples, 1, 99)</pre>
```

```
# Transitions from smoking
temp <- rbeta(n_samples, 85, 15)
transition_matrices["SoC with website", , "Smoking", ] <-
matrix(c((1 - probability_of_death_smoking) * c(temp, 1 - temp),
probability_of_death_smoking), ncol = 3)
```

```
Population Health Sciences
```

44

bristol.ac.uk

Exercise 2 – Solution

<image><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text>

# ISPOR	www.ispor.org
The hesim package	
hesim supports three types of health economic models:	
(i) Cohort discrete time state transition models (cDTSTMs) - These are Mark homogeneous or time-inhomogeneous	ov cohort models and can be time-
(ii) N-state partitioned survival models (PSMs) - Area under the curve model	
(iii) Individual-level continuous time state transition models (iCTSTMs) - in encompass both Markov and semi-Markov processes	dividual-level simulations that can
All models are implemented as R6 classes and have methods for simulating dis	ease progression, QALYs, and costs.
This package is well documented in its CRAN vignette and publication	
CRAN vignette: https://cran.r-project.org/web/packages/hesim/vignettes/intro.ht Publication: https://www.researchgate.net/publication/349424271	tml
One of the examples is recreated in the <u>short course GitHub repo</u> (hesim examp packages folder)	le model.R script in the Additional useful
	5/20

I

ISPOR			www.	ispor.org
hesim functional	ties			
Economic model (R6 class)	Statistical model	Parameter object	Model object	
hesim::CohortDtstm	Custom	hesim::tparams_transprobs	msm::msm	
	Multinomial logistic regressions	hesim::params_mlogit_list	hesim::multinom_list	
hesim::Psm	Independent survival models	hesim::params_surv_list	hesim::flexsurvreg_list	
hesim::IndivCtstm	Multi-state model (joint likelihood)	hesim::params_surv	flexsurv::flexsurvreg	
	Multi-state model (transition- specific)	hesim::params_surv_list	hesim::flexsurvreg_list	

www.ispor.org You've made a model. What's next? You will now need to communicate it to a wider audience. Therefore, you will need to consider the following points for your project: • Who is your audience? • Do they know R? • Othat outputs do you need to effectively communicate this model, and make it as transparent as possible? • Craphs • Thermediate calculations • What documentation is required?		
 www.ispor.org You've made a model. What's next? You will now need to communicate it to a wider audience. Whot is your audience? O they know R? What outputs do you need to effectively communicate this model, and make it as transparent as possible? Graphs Tables Intermediate calculations What documentation is required? 		
You've made a model. What's next? You will now need to communicate it to a wider audience. Therefore, you will need to consider the following points for your project: • Who is your audience? • Do they know R? • What outputs do you need to effectively communicate this model, and make it as transparent as possible? • Graphs • Graphs • Tables • Intermediate calculations • What documentation is required?	# ISPOR	www.ispor.org
 You will now need to communicate it to a wider audience. Therefore, you will need to consider the following points for your project: Who is your audience? Do they know R? What outputs do you need to effectively communicate this model, and make it as transparent as possible? Graphs Tables Intermediate calculations What documentation is required? 	You've made a model. What's next?	
	 You will now need to communicate it to a wider audience. Therefore, you will need to consider the following points for your project: Who is your audience? Do they know R? What outputs do you need to effectively communicate this model, and make it as transparent as possible? Graphs Graphs Intermediate calculations What documentation is required? 	
7/20		7/20

Г

# ISPOR	www.ispor.org
R Markdown	
The examples in this project are called from the <i>hesim example model</i> . <i>R</i> script	
library(rmarkdown)# For creating markdown outputs (html and pdf)library(bookdown)# For creating markdown outputs (html and pdf)library(knitr)# For creating markdown outputs (html and pdf)library(kableExtra)# For creating nice-looking tables in rmarkdown	
Export_params <- list(# Main results Stateprobs = ictstm\$stateprobs_, Summarisedf = ce_sim_ictstm, labs_indiv = labs_indiv	
) Markdown_location <- "./Additional useful packages/R Markdown scripts/"	
	9 / 20

ISPOR	www.ispor.org
Shiny	
shiny - a package that makes it possible to create interactive web applications from R cod	le
Creating an R shiny app considerably increases the accessibility of your R code. However, can be time consuming.	it is a further learning curve and
At it's most basic, a shiny app usually consists of three scripts:	
 app.R The application is called from this script server.R 	
 The app functionality. This is wrapped within a function: function(input, ou This contains the code for the app 'back-end' NiP 	tput, session){}
 u.K This is the layout of the graphical user interface (GUI) This contains the code for the app 'front-end' 	
However, it is possible to have the server function and ui within the app.R script; this is th	e case in the default app if
created from RStudio (5 minute example exercise)	r.
	11/20

# ISPOR	www.ispor.org
Shiny reactivity	
Having your R code as a shiny app enables users to interact with the R code withou app 'front-end' changes causing reactions in the 'back-end' calculations.	seeing the R code. This works by the
1. The user interacts with the input boxes defined in the ui . R script	
2. The functions which are reactive to front-end changes are wrapped in reactive server.R	functions (e.g. reactive(), observe()) in
3. The reactive functions are always 'listening' for changes - when they detect a c	nange the function will re-run
4. The re-running of the reactive functions causes a change in the output, which	he user can then see
An object that is reactive (created using reactive()) is a function. This means that w syntax changes and brackets are needed (e.g. ictstm in the standard script becomes	nen referring to it later in the script, the ictstm() in the server.R script)
	12/20

ISPOR	www.ispor.org
Defining shiny inputs and outputs	
There are two major lists that enable communication between the front-end and back-end:	
input list	
 These are mostly defined in the UI There are many different types, depending on the type of input Each has an id, which can then be used within functions to reference the input value. For exam with an id = "number" can be referenced in a function but using 'nput\$number Examples of inputs can be found here: https://shiny.rstudio.com/tutorial/written-tutorial/lesson 	ple, a numeric input 3/
<pre>#Input example: #This is written in the ui numericInputIcon(inputId = "Input_discount_Costs", label = "Discount for Costs:", min = 0</pre>	
<pre>min = 0, max = 100, value = 3.5, icon = list(NULL, icon("percent")))</pre>	
	13 / 20

<text><section-header></section-header></text>	<text><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></text>
<pre>Defining shiny inputs and outputs output list</pre>	<pre>Defining shiny inputs and outputs output list</pre>
<pre>ci = FALSE) + theme_bw() })</pre>	

ISPOR

Thank You!

Please complete your Course Evaluation Link located in the Community in "Announcements"

Your Certificate of Course Completion can be downloaded from your ISPOR member profile