BONT-As FOR CERVICAL DYSTONIA: COST OF TREATMENT AND RESPONSE TO THERAPY IN **CANADIAN PATIENTS**

A COST EFFECTIVENESS MODEL

Johnston KM¹, Evelyn Griffiths¹, Yulia Privolnev²

¹Broadstreet HEOR, Vancouver, BC Canada; ²IPSEN Canada,, Mississauga, ON, Canada

RESULTS

- Compared with onaBoNT-A, aboBoNT-A resulted in lower annual costs per patient for the management of CD (savings of \$268), and higher QALYs (increase of 0.02). (Table 4)
- Results were driven by differences in injection intervals and a higher treatment response rate for people receiving aboBoNT-A compared with onaBoNT-A. (Table 4)
- Total annual cost per responder was lower for patients receiving aboBoNT-A compared with onaBoNT-A (CD: \$11,390 vs \$17,545). (Table 4)
- Results were consistent across sensitivity analyses.
 - The overall result of lower costs and higher QALYs was also observed in the PSA
 - In OWSA (Figure 2), incremental costs were most sensitive to dose and dosing interval inputs, while incremental QALYs were most sensitive to utility per response status inputs

Table 1: Response to therapy

	aboBoNT-A	onaBoNT-A	Source
Response rate: N (%)	253 (32%)	103 (22.3%)	Misra et al. ¹ INTEREST-1 study
Dose (units): Mean (SE)	500 (100)	160 (32)	Misra et al. ¹ INTEREST-1 study
Dosing interval (weeks): Mean (SE)	17.4 (6.9)	16.0 (5.4)	INTEREST-1 clinical study report

Table 2: Cost of BoNT-A therapies

	Vial size (units)	Cost	Cost per unit
aboBoNT-A	300	428.40	1.43

BACKGROUND

- For adults with cervical dystonia (CD), treatment with botulinum neurotoxin type A (BoNT-A) can improve achievement of treatment goals.
- Differences across individual BoNT-A therapies with respect to acquisition cost, response rates, and dosing frequency can have implications for healthcare spending and patient outcomes

OBJECTIVE

The objective of this analysis was to evaluate average expenditures per response obtained with abobotulinumtoxinA (aboBoNT-A) and onabotulinumtoxinA (onaBoNT-A) for CD in Canada

METHODS

• A cost-effectiveness model was developed that incorporated data describing response rates in CD by BoNT-A therapy, health state utilities and health resource utilization by response status, and acquisition cost of BoNT-As in Canada. (Figure 1)

SE=Standard error

Table 3: Costs and HRqOL by

	Responders to therapy	Non- responders to therapy	Source
Health care utilization costs: Mean (SE)	\$863 (\$184)	\$1,429 (\$229)	Johnston et al. 2020 ²
Health state utility (overall): Mean (SE)	0.76 (0.03)	0.60 (0.03)	Hilker et al. 2001 ³
QALY decrement: adverse events due	-0.007	-0.048	Matza et al. 2019 ⁴
to oral therapies			Sullivan et al. 2011 ⁵

QALY=Quality-adjusted life year; SE=Standard error

	500	714.00	1.43
	50	178.5	3.57
aBoNT-A	100	357	3.57
	200	714	3.57

Table 4: Absolute and incremental results, overall and by responder status

	Absolute results		Incremental results
	aboBoNT-A	onaBoNT-A	
Costs	\$3,744	\$4,016	-\$271
BoNT-A costs	\$2,496	\$2,712	-\$216
HCRU costs	\$1,248	\$1,303	-\$55
Responders	32%	22%	10%
Cost per responder	\$11,701	\$18,007	-\$6,306
QALYs	0.62	0.60	0.02
Based on response status	0.65	0.64	0.02
AE disutilities	-0.035	-0.039	0.004
AE incidence (%)			
Dry mouth	21.5%	24.4%	-3.0%
Forgetfulness	13.2%	15.0%	-1.8%
Drowsiness	12.6%	14.0%	-1.4%
Fatigue	7.6%	8.7%	-1.1%
Dizziness	6.4%	7.0%	-0.6%
Incremental cost per			abo oNT-A
responder			dominates
Incremental cost per OALY			abo oNT-A
			dominates

AE=Adverse Event; QALY=Quality-adjusted life year

- Response rates and dosing intervals were based on a prospective observational study comparing Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) scores for CD patients receiving aboBoNT-A (32.0%; 17.4 weeks) vs. onaBoNT-A (22.3%; 16.0 weeks).¹ (Table 1)
- Drug acquisition costs were based on Canadian unit costs (Table 2) with administration costs estimated to be \$120 per administration.
- Health resource use by response status was based on a physician survey initially conducted in the United Kingdom and validated by Canadian physicians. (Table 3)
- Health state utilities by response status were based on published data reporting change from baseline in utility following BoNT-A treatment (0.60 vs. 0.76). (Table 3)
- Quality-adjusted life years (QALYs) were also adjusted for adverse events (AEs) associated with oral therapies that are utilized more frequently by BoNT-A non-responders. (Table 3)

ANALYSIS OF DATA

• A 1000-iteration probabilistic sensitivity analysis (PSA) and one-way sensitivity analyses (OWSA) were conducted.

Footnote: a) incremental costs and (b) incremental QALY

LIMITATIONS

Health-related quality of life data were taken from a variety of published sources, including assumed utilities values for adverse events of oral therapies

REFERENCES

¹ Misra VP, Danchenko N, Maisonobe P, Lundkvist J, Hunger M. Economic evaluation of AbobotulinumtoxinA vs OnabotulinumtoxinA in real-life clinical management of cervical dystonia. Journal of Clinical Movement Disorders. 2020 Dec;7:1-0.

² Johnston KM, Danchenko N, Lundkvist J. PND34 Resource use related to cervical dystonia, pediatric lower limb spasticity and adult upper limb spasticity in the united kingdom: a physician questionnaire. Value in Health. 2020 May 1;23:S265

³ Hilker R, Schischniaschvili M, Ghaemi M, Jacobs A, Rudolf J. Health related quality of life is improved by botulinum neurotoxin type A in long term treated patients with focal dystonia. Journal of Neurology, Neurosurgery & Psychiatry. 2001 Aug 1;71(2):193-9.

⁴ Matza LS, Deger KA, Vo P, Maniyar F, Goadsby PJ. Health state utilities associated with attributes of migraine preventive treatments based on patient and general population preferences. Quality of Life Research. 2019 Sep 15;28:2359-72.

⁵ Sullivan PW, Slejko JF, Sculpher MJ, Ghushchyan V. Catalogue of EQ-5D scores for the United Kingdom. Medical Decision Making. 2011 Nov;31(6):800-4.

• Resource use estimates from the UK were assumed to apply to Canadian CD patients

CONCLUSION

With higher response rates and reduced costs, aboBoNT-A may be an optimal choice for treating cervical dystonia in Canada.

DISCLOSURES

FUNDING: IPSEN Canada

DISCLOSURES: KMJ and EG are employees of Broadstreet HEOR, which received funds from IPSEN Canada for this work. YP is an employee of IPSEN Canada.

Contact: kjohnston@broadstreetheor.com