## Effectiveness of pneumococcal vaccination in older adults in a Real-World setting: a systematic review and meta-analysis of observational studies using test-negative designs



Wolf A, Ph.D.<sup>1</sup>; Huang Q, Ph.D.<sup>2</sup>; Song C, Ph.D.<sup>3</sup>

<sup>1</sup>Evidera, London, London, UK, <sup>2</sup>Evidera, Bethesda, MD, USA, <sup>3</sup>Evidera, Stockholm, Sweden

### Background

- Pneumococcal disease continues to be a major worldwide cause of vaccinepreventable morbidity and mortality, in particular among older adults.
- Pneumococcal vaccination is commonly recommended among older adults above age 65.
- Vaccine effectiveness (VE) of pneumococcal vaccination among older adults in real-world setting is still largely unknown.
- Test-negative design (TND) provides high-quality evidence for estimating VE.

## Objectives

 To understand VE of pneumococcal vaccination in older adults in real-world settings.

### Methods

- Literature search was performed in PubMed:
- Observational studies published between January 2010 and April 2023
- VE of pneumococcal vaccination against pneumococcal disease
- Studies using TND design
- Publication in English
- Independently conducted by two pre-specified investigators.
- Of the 18 articles identified, 7 were included in the meta-analysis (Figure 1).
- Characteristics of individual studies are presented in Table 1.
- Pooled odds ratios (ORs) were estimated using meta-analysis with fixed-effects.
- Results were reported by vaccine type (i.e., 13-valent pneumococcal conjugate vaccine [PCV13] and 23-valent pneumococcal polysaccharide vaccine [PPSV23]).
- Results were further stratified by model type (crude; multivariable-adjusted) and infection type (all; vaccine-serotype).

Figure 1. Flow chart of study selection

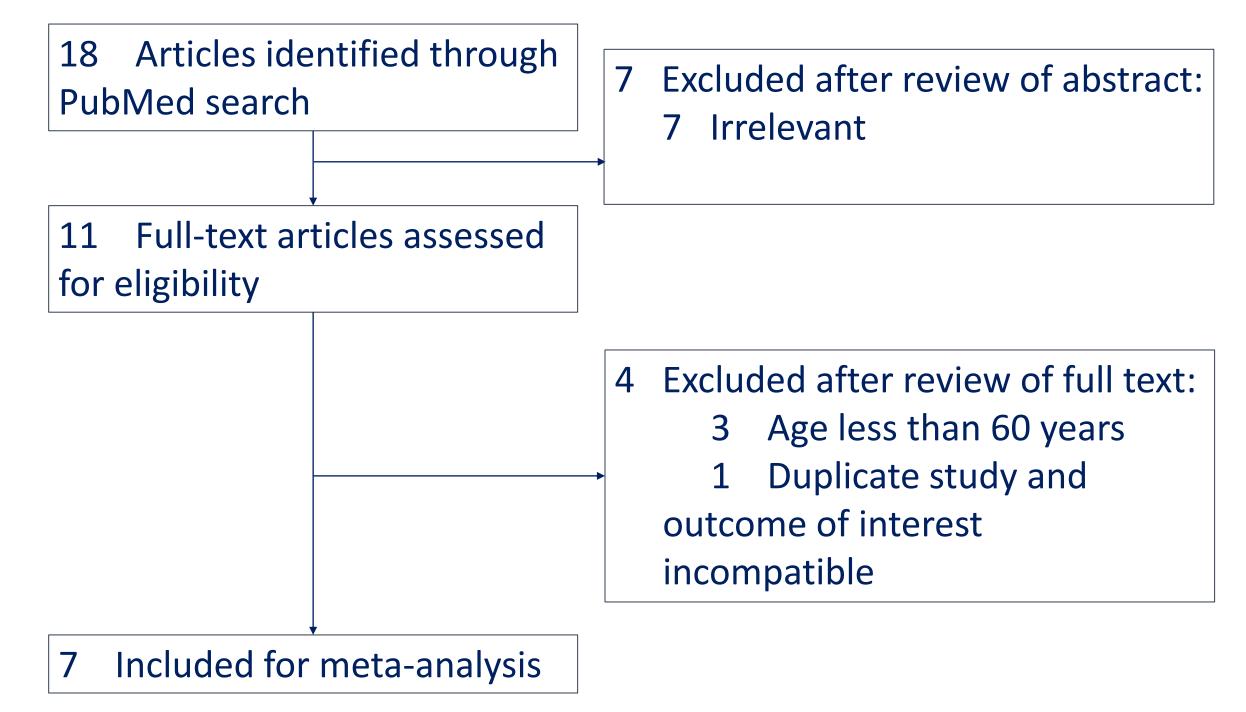
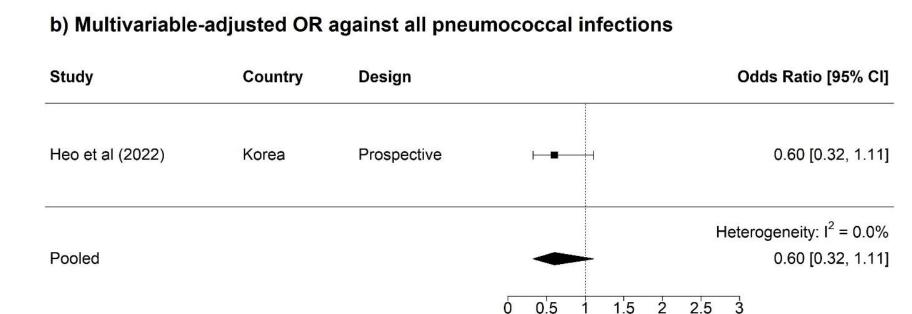



Table 1. Included studies evaluating vaccine effectiveness of pneumococcal vaccination against pneumococcal disease among older adults

| Author (year)            | Title                                                                                                                                                                                                         | Population | Vaccine type  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
|                          | Effectiveness of Pneumococcal Vaccination Against Pneumococcal Pneumonia Hospitalization in Older Adults: A Prospective, Test-Negative Study                                                                  | Korea      | PCV13, PPSV23 |
| Sun et al (2021)         | Effectiveness of 23-Valent Pneumococcal Polysaccharide<br>Vaccine Against Pneumococcal Diseases Among the Elderly<br>Aged 60 Years or Older: A Matched Test Negative Case-Control<br>Study in Shanghai, China | China      | PPSV23        |
| Suzuki et al (2017)      | Serotype-specific effectiveness of 23-valent pneumococcal polysaccharide vaccine against pneumococcal pneumonia in adults aged 65 years or older: a multicentre, prospective, testnegative design study       | Japan      | PPSV23        |
| Chandler et al<br>(2022) | 23-Valent Pneumococcal Polysaccharide Vaccination Does Not<br>Prevent Community-Acquired Pneumonia Hospitalizations<br>Due to Vaccine-Type Streptococcus pneumoniae                                           | US         | PPSV23        |
| Lawrence et al (2020)    | Effectiveness of the 23-valent pneumococcal polysaccharide vaccine against vaccine serotype pneumococcal pneumonia in adults: A case-control test-negative design study                                       | UK         | PPSV23        |
| McLaughlin et a (2018)   | Effectiveness of 13-Valent Pneumococcal Conjugate Vaccine<br>Against Hospitalization for Community-Acquired Pneumonia<br>in Older US Adults: A Test-Negative Design                                           | US         | PCV13         |
| Prato et al (2018)       | Effectiveness of the 13-valent pneumococcal conjugate vaccine against adult pneumonia in Italy: a case-control study in a 2-year prospective cohort                                                           | Italy      | PCV13, PPSV23 |


### Results

### **VE of PCV13**

- Three TND studies reported VE of PCV 13
- Pooled multivariable-adjusted OR against vaccine-serotype infections was 0.40 (95% CI: 0.17-0.95) (Figure 2d)
- Only one study reported multivariable adjusted OR of PCV13 against all pneumococcal infection, which did not show a significant effect (Figure 2b)
- Cls were wide and no meaningful statistical comparisons could be made
- The heterogeneity is consistently low in all analysis, partly due to small number of studies

### Figure 2. Pooled odds ratios of VE of PCV13

| Korea | Prospective | ⊢=    |          |      |                             |                   | 0.57 [              | 0.32, 1.                            |
|-------|-------------|-------|----------|------|-----------------------------|-------------------|---------------------|-------------------------------------|
| 723   |             |       | 25       |      |                             |                   | 1500151050          | powerstrought have                  |
| Italy | Prospective | ı—-   | •        |      | -1                          |                   | 0.67 [              | 0.20, 2.                            |
|       |             | 4     | <b>-</b> |      | į                           | Heter             |                     | y: I <sup>2</sup> = 0.<br>[0.35, 1. |
|       |             | 0 0.5 | 1 1      | .5 2 | 2.5                         | 3                 |                     |                                     |
| -     |             |       | 0 0.5    |      | 0 0.5 1 1.5 2<br>Odds Ratio | 0 0.5 1 1.5 2 2.5 | 0 0.5 1 1.5 2 2.5 3 | 0 0.5 1 1.5 2 2.5 3                 |



Odds Ratio

| c) Crude OR agains      | st vaccine- | serotype infecti | ons             |         |        |                                                      |
|-------------------------|-------------|------------------|-----------------|---------|--------|------------------------------------------------------|
| Study                   | Country     | Design           |                 |         | Od     | ds Ratio [95% CI]                                    |
| Heo et al (2022)        | Korea       | Prospective      | <b>⊢</b> ■      | T       |        | 0.61 [0.19, 2.03]                                    |
| McLaughlin et al (2018) | US          | Retrospective    | <b>⊢</b> ■───-1 |         |        | 0.27 [0.08, 0.87]                                    |
| Prato et al (2018)      | Italy       | Prospective      | F .             |         |        | 0.62 [0.13, 2.84]                                    |
| Pooled                  |             |                  | •               |         | Hetero | ogeneity: I <sup>2</sup> = 0.0%<br>0.45 [0.21, 0.93] |
|                         |             |                  | 0 0.5 1 1       | 1.5 2   | 2.5 3  |                                                      |
|                         |             |                  | Odds            | s Ratio |        |                                                      |

# d) Multivariable-adjusted OR against vaccine-serotype infections Study Country Design Odds Ratio [95% CI] Heo et al (2022) McLaughlin et al (2018) US Retrospective Heterogeneity: I<sup>2</sup> = 0.0% 0.40 [0.17, 0.95] Odds Ratio

### **VE of PPSV23**

- Six TND studies reported VE of PPSV23
- Pooled multivariable-adjusted
   OR against vaccine-serotype
   infections was 0.80 (95% CI:
   0.66-0.96) (Figure 3d)
- Similar results for pooled multivariable-adjusted OR against all pneumococcal infections, and pooled crude OR against all and vaccine-serotype infections (Figure 3a-c)

### Figure 3. Pooled odds ratios of VE of PPSV23

| a) Crude OR agai    | inst all pneui | mococcal infect | ions                                                   |
|---------------------|----------------|-----------------|--------------------------------------------------------|
| Study               | Country        | Design          | Odds Ratio [95% CI]                                    |
| Heo et al (2022)    | Korea          | Prospective     | <b></b> 0.86 [0.62, 1.20]                              |
| Sun et al (2021)    | China          | Retrospective   | <b>-</b> ■→ 0.76 [0.59, 0.97]                          |
| Suzuki et al (2017) | Japan          | Prospective     | 0.78 [0.59, 1.01]                                      |
| Prato et al (2018)  | Italy          | Prospective     | 1.04 [0.50, 2.17]                                      |
| Pooled              |                |                 | Heterogeneity: I <sup>2</sup> = 0.0% 0.80 [0.68, 0.93] |
|                     |                |                 | 0 0.5 1 1.5 2 2.5                                      |
|                     |                |                 | Odds Ratio                                             |

### b) Multivariable-adjusted OR against all pneumococcal infections Odds Ratio [95% CI] Design Heo et al (2022) 0.89 [0.63, 1.26] Sun et al (2021) 0.75 [0.58, 0.97] Retrospective Suzuki et al (2017) 0.73 [0.54, 0.97] Heterogeneity: $I^2 = 0.0\%$ 0.77 [0.65, 0.91] Pooled 0 0.5 1 1.5 2 2.5 Odds Ratio

| c) Crude OR again     | st vaccine- | serotype infecti | ons                  |                                                           |
|-----------------------|-------------|------------------|----------------------|-----------------------------------------------------------|
| Study                 | Country     | Design           |                      | Odds Ratio [95% CI]                                       |
| Heo et al (2022)      | Korea       | Prospective      | <b>⊢</b>             | 0.88 [0.50, 1.57]                                         |
| Suzuki et al (2017)   | Japan       | Prospective      | ⊢■→                  | 0.69 [0.50, 0.96]                                         |
| Chandler et al (2022) | US          | Retrospective    | 1                    | 1.01 [0.65, 1.57]                                         |
| Lawrence et al (2020) | UK          | Prospective      | ⊦∎⊢                  | 0.78 [0.61, 1.00]                                         |
| Pooled                |             |                  | •                    | Heterogeneity: I <sup>2</sup> = 0.0%<br>0.79 [0.67, 0.94] |
|                       |             |                  | 0 0.5 1 1.5 2 2      | 5                                                         |
|                       |             |                  | Odds Ratio           |                                                           |
| d) Multivariable-ad   | djusted OR  | against vaccine  | -serotype infections |                                                           |
| Study                 | Country     | Design           |                      | Odds Ratio [95% CI]                                       |
| Heo et al (2022)      | Korea       | Prospective      |                      | 0.94 [0.51, 1.74]                                         |
| Suzuki et al (2017)   | Japan       | Prospective      | <b>⊢■</b> —-(        | 0.66 [0.47, 0.94]                                         |
| Chandler et al (2022) | US          | Retrospective    | <b>⊢</b>             | 0.98 [0.63, 1.52]                                         |
| Lawrence et al (2020) | UK          | Prospective      | ⊢∎⊢                  | 0.80 [0.60, 1.06]                                         |
|                       |             |                  |                      | 2                                                         |

Heterogeneity:  $I^2 = 0.0\%$ 

0 0.5 1 1.5 2 2.5

Odds Ratio

### Conclusions

• The evidence supports the use of both PCV13 and PPSV23 in the prevention of pneumococcal disease in real-world settings.

Pooled