Harmonization of Cohorts, Adjustment Methods, and Endpoint Assessments for the Development of ECAs

Spotlight Session #132 at ISPOR Europe 2023 (Copenhagen, Denmark; 13 November, 2023)

Qiufei Ma, PhD, Senior Director HEOR, Regeneron Pharmaceuticals, Inc.
Disclosure

• Qiufei Ma is an employee and shareholder of Regeneron Pharmaceuticals, Inc.
• The views and recommendations are the employee's own and not to be attributed to the employer, Regeneron
Recent ECA Developments in Hematology Oncology: Industry Examples

<table>
<thead>
<tr>
<th>ECA name</th>
<th>Disease</th>
<th>Multiple data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReCORD-FL (Salles et al, 2022)</td>
<td>FL</td>
<td>10 clinical centers in 5 countries (US, Canada, Spain, UK, Germany)</td>
</tr>
<tr>
<td>SCHOLAR-5 (Ghione et al, 2022)</td>
<td>FL</td>
<td>7 clinical centers in 5 countries (US, Canada, Spain, UK, Portugal) pooled with post-trial data</td>
</tr>
<tr>
<td>SCHOLAR-2 (Hess et al 2022)</td>
<td>MCL</td>
<td>14 centers in UK, France, Germany, Spain, Italy, Sweden, and Denmark</td>
</tr>
<tr>
<td>NDS-NHL-001 (Van Le et al, 2023)</td>
<td>DLBCL</td>
<td>11 clinical sites (2 in North America and 9 in Europe) pooled with 3 US EHR</td>
</tr>
<tr>
<td>KarMMa-RW (Jagannath et al, 2021)</td>
<td>MM</td>
<td>Data sources from North America and Europe: < 30 clinical sites, registry, 4 EHR</td>
</tr>
<tr>
<td>ORCHID / FLORA (Thieblemont et al, 2022; Bachy et al, 2022)</td>
<td>DLBCL / FL</td>
<td>About 30 global clinical sites (North America, Europe, Asia)</td>
</tr>
</tbody>
</table>

Limitations Raised by Regulator / HTA Reviewers That Impact the Interpretability of the ECA Results

Today’s focus is on the following challenges (and potential solutions):

1. Heterogeneity of data collection / capture across multiple data sources
2. Selection of prognostic variables for matching / weighting in comparative analyses
3. Lack of standardized assessment criteria and timing of real-world response

ECA: external control arm; HTA, health technology assessment.
One Cohort Needs To Be Drawn From Multiple Sources

Selecting similar patients to those in a target trial to create an ECA cohort

ECA versus Target trial

ECA: external control arm.
Identifying an ECA Cohort Comparable to the Trial Arm

- Conducting a **feasibility** assessment of target trial I/E criteria used in real-world (RW) settings
 - With clinical expert input, site-/data-manager interview, literature review
- Documenting **similarities and differences** in I/E criteria between ECA and target trial
 - Explaining why some trial criteria are not applicable in RW settings
- Developing a **systematic** approach to applying the trial I/E criteria across real-world data sources
 - Aim to use majority of the trial I/E criteria (e.g., 50%-70%). Limitation: excluding those with missing values for I/E will reduce sample size
 - May modify key inclusion criteria to exclusion instead (e.g., convert inclusion requirement ECOG=0/1 to exclusion criteria [i.e., exclude those with ECOG>=2])
 - For criteria not existing in RW, appropriate algorithm/imputation can be leveraged with clinical judgment
 - Example: how to apply “life expectancy > 6 month” in ECA? Development of de novo life expectancy (LE) prediction models, incorporating known predictors for LE and clinical expert opinion, to allow for the application of the minimum LE clinical trial criterion in RW studies

I/E: inclusion and exclusion; ECA: external control arm; ECOG: Eastern Cooperative Oncology Group; RW: real-world
How to Select Prognostic Factors for Matching/Weighting in Comparative Analyses?

- To avoid a results-driven analysis, the relevant factors of the adjustment in the analysis must be prespecified.
- Ranking importance of factors is also essential for actual variable use and imputation for missing values in ECA.

Challenge

Lack of consensus on important prognostic factors

- How to prespecify prognostic factors for adjustment?

Solution

Conduct a systematic literature review and survey of physician experts.

ECA: external control arm.
Key Prognostic Factors: Myeloma Example

Step 1: To conduct an SLR of prognostic factors associated with objective response rate, overall survival, progression-free survival, complete response, partial response, and duration of response in patients with relapsed / refractory multiple myeloma.¹

Step 2: Ranking importance of prognostic factors for MM—international physician panel consensus following an SLR¹

- Included international MM clinical experts from France, Germany, the UK, and the US
- The objective of the panel was to confirm the variables identified in the SLR and to rank the prognostic factors by level of importance:
 - Pooled rankings calculated by averaging across the experts’ individual rankings
 - Presented to the panel for discussion; rounds of panel voting to obtain agreement

¹Kumar et al., Hemasphere. 2023a; IMS, 2023b.
MM: multiple myeloma; SLR: systematic literature review.
Clinical Trial Response Determination had a Fixed Schedule With Prespecified Classification Criteria

- In oncology trials, and unlike in the real-world, response is generally assessed according to a fixed schedule.

- Single-arm trial, DLBCL, regular imaging schedule to ascertain treatment response: according to the Lugano classification of malignant lymphoma and as assessed by independent central review (ICR)

- Similar considerations apply to cancers with laboratory-based responses, e.g., multiple myeloma

DLBCL: diffuse large B cell lymphoma.
Variability in RW Response Assessment

Situation

Differences in response assessment approach and schedule of subjects from RW sources may impact the interpretability of the ECA study results

DLBCL Example

- Target trial: Response assessment based on Lugano according to ICR
- ECA RW response criteria: May also include IWG Response Criteria and Revised Response Criteria for Malignant Lymphoma, in addition to Lugano
 - Certain sites (e.g., Germany) do not systematically undertake PET-CT scans for patients. Some patients cannot be classified per Lugano due to the lack of required underlying information (PET-CT)

Improve Ascertainment of ECA Treatment Response

When a trial primary endpoint is **response** and timeline / budget allow, there are 2 options for consideration:

1. Collect scans for all patients
 (Thieblemont et al, 2022; Bachy et al, 2022)
 - **ICR** of baseline and follow-up scans, per Lugano, as primary analysis of response:
 - Pros: may harmonize RW response determination; mimics target clinical trial’s endpoint
 - Cons: cost and timeline implications; need a larger pool of patients to yield adequately sized subsample of patients with available scans
 - **Sensitivity** analysis: treating physician-assessed response comparison from ECA vs trial

2. Collect scans in a subset of patients
 (Zinzani et al, 2021)
 - **Validation** of response assessments can be performed on 20% of patients from an ECA:
 - Available scans before baseline and ≥ 1 postbaseline scan, physician recorded tumor-response assessment, and relevant available clinical data
 - Response assessments from the physician-reported and the independently reviewed/validated can be subjected to a concordance analysis
 - Pros: validate RW response
 - Cons: subset may not be representative of all patients

Note that ICR does not improve on data availability nor fully resolve assessment schedule difference

ECA: external control arm; ICR: Independent central review; RW: real-world.
Summary

Harmonization of cohorts, adjustment methods, and endpoint assessments for the development of ECAs:

1. Develop a systematic approach to applying the trial inclusion / exclusion criteria across RW data sources
2. Conduct an SLR and survey of physician experts to define prognostic factors a priori in the SAP, for matching / weighting in comparative analyses
3. Use independent central review (ICR) or validate response in a subset of patients to enhance the comparability of outcomes

ECA: external control arm; ICR: Independent central review; RW: real-world; SAP: statistical analysis plan; SLR: systematic literature review.
References

- Kumar S, et al. Ranking importance of prognostic factors for relapsed/refractory multiple myeloma (RRMM): international physician panel consensus following a systematic review of the literature. Presented at the International Myeloma Society Conference; 2023; Athens, Greece.

Acknowledgments: I thank James Harnett, Jessica Jalbert, Christian Hampp, Rachel Sobel, Siddhesh Kamat, and Olivier Humblet for their reviews and suggestions. Editorial support was provided by Oxford PharmaGenesis, Inc., (Newtown, PA, USA) and funded by Regeneron, Inc. (Tarrytown, NY, USA).