Abstract ID: 121736 Poster #: EE643

A Targeted Review of Cost-Effectiveness of Immunotherapies Used in Treatment of Metastatic Non-Small-Cell Lung Cancer Patients in EU-5, Sweden, and Switzerland

Trikha S¹, Mehta M², Ghosh S³, *Chatterjee M*⁴, Mahajan K⁴, Aggarwal A⁵

¹IQVIA, Bengaluru, KA, India, ²IQVIA, Bengaluru, KA, India, ³IQVIA, New Delhi, DL, India, ⁴IQVIA, Gurgaon, India, ⁵IQVIA, Gurgaon, HR, India

Background

- Lung cancer is the leading cause of cancer deaths worldwide, with an estimated 2.2 million new cases and 1.8 million deaths in 2020.¹
- Similar trends have been observed in Europe (EU) where 477,534 new cases were diagnosed, with a 5-year agestandardised prevalence of 77.8 per 100,000 in 2020.²
- Non-small cell lung cancer (NSCLC) accounts for 85% of all primary lung malignancies worldwide³ of which 70% are advanced (a) or metastatic (m)⁴, with 5-year survival rates of 6.0-7.0% across EU.^{5,6}
- Prognosis of mNSCLC (without driver mutations) remain poor with median overall survival (OS) of less than one year with standard of care (SoC) chemotherapy options.⁷
- Immune checkpoint inhibitors (ICIs) have shown an increase in median OS to 1 to 2 years in numerous clinical studies in patients with mNSCLC⁷⁻⁹, resulting in a paradigm shift in treatment of mNSCLC patients.
- Despite improved clinical outcomes, high cost of ICIs requires the evaluation of economic impact of these drugs.
- Hence, cost effectiveness analyses for various ICIs such as pembrolizumab, durvalumab, nivolumab, and atezolizumab were evaluated and summarised in this targeted review.

Objective

• To analyse published cost-effectiveness (CE) studies to understand the importance of ICIs and their role in decision making in mNSCLC in EU-5 (France, Germany, Italy, Spain, United Kingdom [UK]), Sweden and Switzerland, through a targeted literature review.

ال

Methods

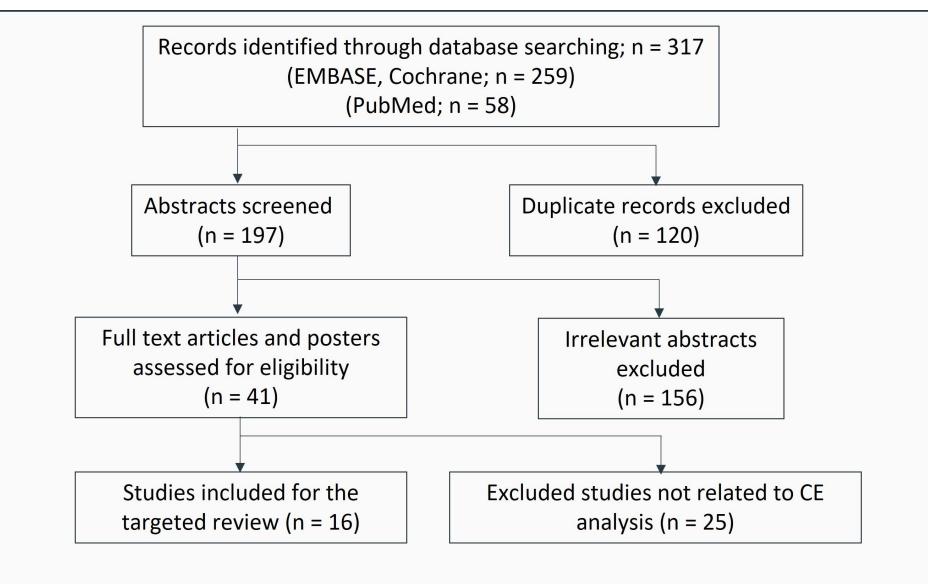

- Electronic databases such as PubMed, EMBASE, and Cochrane were used to perform a targeted literature search.
- The articles were screened against pre-defined eligibility criteria based on PICOS (Population, Intervention, Comparator, Outcomes, Study design), as in Table 1.
- Search was limited to English language, last conducted on 28 June 2022, with a 5-year and country filter.
- De-duplication was performed manually.
- The detailed search strategy is described in Figure 1.

Table 1: Screening of articles based on PICOS criteria

Patient population	Previously treated and untreated mNSCLC patients (without driver mutations)
Intervention	ICIs (nivolumab, pembrolizumab, atezolizumab, durvalumab)
Comparator	SoC Chemotherapy (platinum/non-platinum/taxol-based)
Outcomes	LYs, QALYs, ICER, total cost
Study design	Cost-effectiveness analysis

ICER, Incremental cost-effectiveness ratio; ICI, Immune checkpoint inhibitor; LY, Life year; NSCLC, Non-small cell lung cancer; PICOS, Population, Intervention, Comparator, Outcomes, Study design; SoC: Standard of care; QALY, Quality-adjusted life years

Figure 1: Flow chart for identification of articles related to the targeted review of cost-effectiveness of ICIs in mNSCLC

CE, Cost-effectiveness; ICI, Immune checkpoint inhibitor; mNSCLC, Metastatic non-small cell lung

Result

- Sixteen cost-effectiveness studies were identified, of which fifteen were from a healthcare payer perspective.
- First-line (1L) pembrolizumab monotherapy in previously untreated mNSCLC patients expressing PD-L1 TPS ≥50% resulted in QALY gains (range 0.74–1.34) versus SoC chemotherapy (n=4) (Table 2).

• Of all 4 countries, pembrolizumab monotherapy was not costeffective in the UK (Table 2) due to a higher current willingnessto-pay (WTP) threshold.¹⁰

Table 2: Cost-effectiveness of 1L pembrolizumab versus SoC chemotherapy

Country wise outcomes	Incremental gain
Switzerland ¹	
LYs	1.69
QALYs	1.34
Costs	CHF 77,060
WTP threshold (CHF/QALY)	100,000
ICER (CHF/QALY)	57,402
France ²	
LYs	0.93
QALYs	0.74
Costs	€ 37,064
WTP threshold (€/QALY)	170,000
ICER (€/QALY)	84,097
UK ³	
QALYs	0.74
Costs	USD 83,000
WTP threshold (USD/QALY)	42,048
ICER (USD/QALY)	115,000
Switzerland ⁴	
LYs	0.29
QALYs	0.83
WTP threshold (CHF/QALY)	100,000
Costs	CHF 56,585
WTP threshold (CHF/QALY)	100,000
ICER (CHF per QALY)	68,580

CHF, Swiss Franc; ICER, Incremental cost-effectiveness ratio; 1L, First-line; LY, Life year; QALY, Quality-adjusted life years; USD, United States dollars; UK, United Kingdom; WTP, Willingness-to-pay. References: 1) Bhaduri A et al. Swiss Medical Weekly, 2019; 2) Chouaid C et al. Lung Cancer, 2019; 3) Georgieva et al. Lung cancer, 2018; 4) Barbier MC et al. Eu J Health Econ, 2021

• Durvalumab consolidation following chemoradiotherapy for patients with unresectable mNSCLC and PD-L1 TPS ≥ 1% was also estimated to be cost-effective (n=3), with an increase in mean QALYs in Italy (2.73), Switzerland (1.18), and the UK (2.51) (Table 3).

Table 3: Cost-effectiveness of 1L durvalumab consolidation versus chemoradiotherapy

Country wise outcomes	Incremental gain
Switzerland ¹	
LYs	1
QALYs	0.76
Costs	CHF 67,239
WTP threshold (CHF/QALY)	100,000
ICER (CHF/QALY)	88,703
ltaly ²	
LYs	0.16
QALYs	0.24
Costs	€ 10,020
WTP threshold (€/QALY)	16,372
ICER (€/QALY)	42,322
UK ³	
LYs	3.07
QALYs	2.51
Costs	£ 56,800
WTP threshold (£/QALY)	30,000
ICER (£/QALY)	22,665

CHF, Swiss Franc; ICER, Incremental cost-effectiveness ratio; 1L, First-line; LY, Life year; QALY, Quality-adjusted life years; UK, United Kingdom; WTP, Willingness-to-pay.

References: 1) Panje CM et al. Ann of Onco, 2020; 2) Armeni P et al. Clin Ther, 2020; 3) Dunlop W et

al. Pharmcoecon, 2022

• Among 1L treatments, pembrolizumab was more cost-effective versus nivolumab in Germany, but not in France (n=2, Table 4).

Table 4: Cost-effectiveness of pembrolizumab versus nivolumab

Country wise outcomes	Incremental gain	
Germany ¹		
LYs	0.06	
QALYs	0.08	
Costs	€ 4,914	
WTP threshold (€/QALY)	120,000	
ICER (€/QALY)	81,567	
France ²		
LYs	0.06	
QALYs	0.04	
Costs	€ 5,582	
WTP threshold (€/QALY)	120,000	
ICER (€/QALY)	144.357	

ICER, Incremental cost-effectiveness ratio; LY, Life year; QALY, Quality-adjusted life years; WTP, Willingness-to-pay. References: 1) Verma J et al. Cancer-Eco Evalu, 2020 (PCN36); 2) Verma J et al. Cancer-Eco Evalu, 2020 (PCN37)

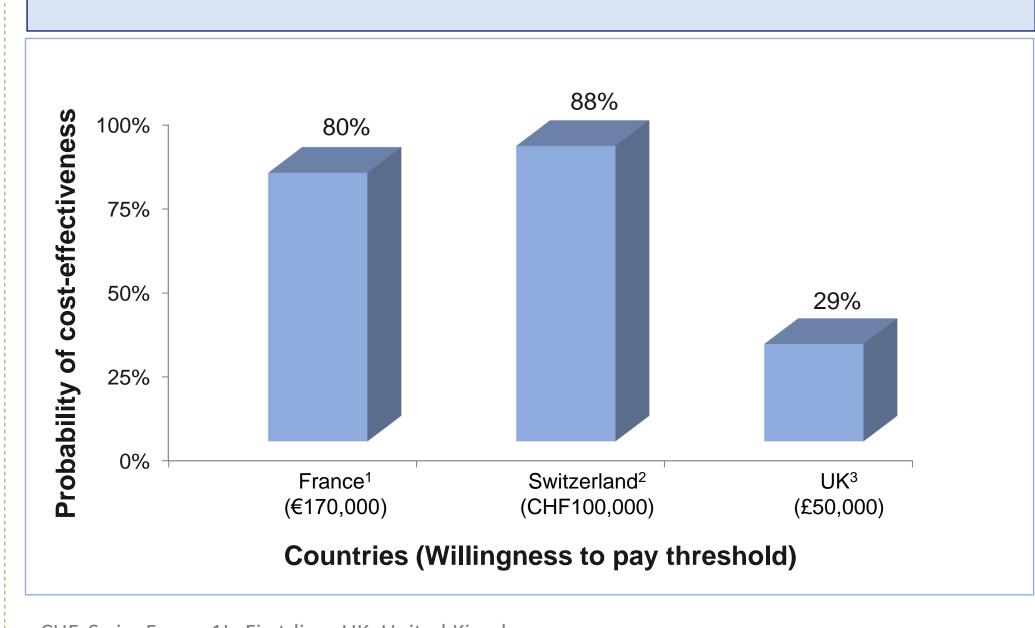
• In previously treated mNSCLC patients, nivolumab monotherapy was shown to be cost-effective as compared to docetaxel in Sweden (n=1, Table 5).

Table 5: Cost-effectiveness of nivolumab versus docetaxel

Country wise outcomes	Incremental gain
Sweden ¹	
LYs	1.28
QALYs	0.94
Costs	SEK 535,333
WTP threshold (SEK/QALY)	750,000
ICER (SEK/QALY)	568,895

ICER, Incremental cost-effectiveness ratio; LY, Life year; QALY, Quality-adjusted life years; SEK, Swedish Krona; WTP, Willingness-to-pay. References: 1) Chaudhary et al. J Med Econ, 2021

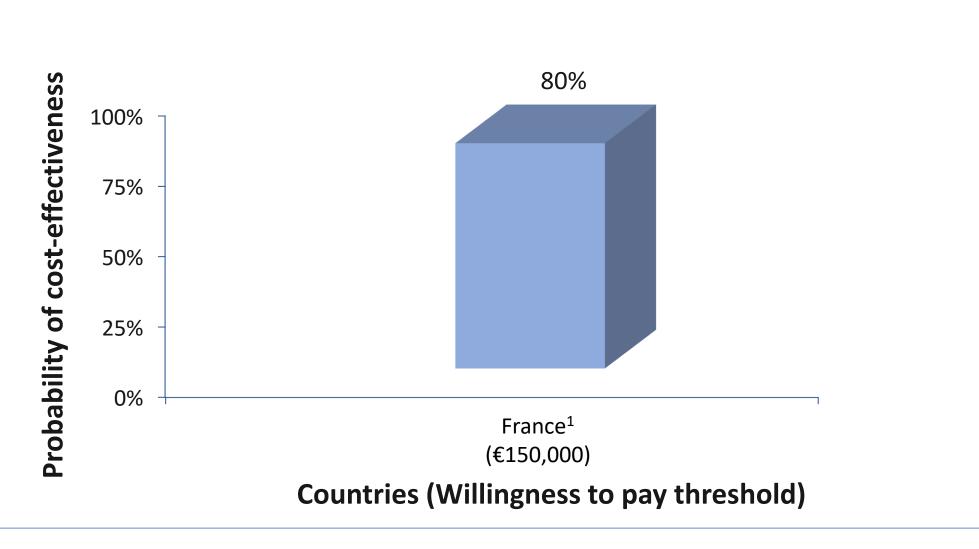
• At second-line (2L), atezolizumab was more efficient but costlier than docetaxel in the treatment of mNSCLC in France (n=1, Table 6).


Table 6: Cost-effectiveness of 2L atezolizumab versus docetaxel

Outcomes ¹	Incremental gain
QALYs	0.47
Costs	€ 49,429
WTP threshold (€/QALY)	150,000
ICER (€/QALY)	104,835

ICER, Incremental cost-effectiveness ratio; 2L, Second-line; QALY, Quality-adjusted life years; WTP, Willingness-to-pay References: 1) Marine S et al. J Med Econ, 2020.

• At the specified WTP threshold of €170,000/QALY, CHF 100,000/QALY, and £50,000/QALY, the probability of 1L pembrolizumab being cost-effective was 80%, 88%, and 29% in France, Switzerland, and the UK, respectively (Figure 2).


Figure 2: Probability of 1L pembrolizumab being cost-effective

CHF, Swiss Franc; 1L, First-line; UK, United Kingdom References: 1) Chouaid C et al. Lung Cancer, 2019; 2) Bhaduri A et al. Swiss Medical Weekly, 2019; 3) Hu X et al. Lung Cancer, 2018.

• At a WTP threshold of €150,000/QALY, the probability of 2L atezolizumab being cost-effective was 80% in France (Figure 3).

Figure 3: Probability of 2L atezolizumab being cost-effective

2L, Second-line References: 1) Marine S et al. J Med Econ, 2020.

Conclusion

- Our targeted review summarises the cost-effectiveness of immunotherapies in mNSCLC in selected EU nations.
- However, further research is needed to demonstrate how these pharmacoeconomic analyses can guide clinicians/policymakers in the timely adoption of these therapies to maximise patient benefit.

References

- 1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J Clin*. 2021;71(3):209-249.
- 2. World Health Organization- International Agency for Research on Cancer. Globocan Europe Fact Sheet 2018. Available at http://gco.iarc.fr/today/data/factsheets/populations/908-europe-fact-sheets.pdf. Accessed October 2022.
- 3. LUNGevity Foundation. Types of Lung Cancer. Available at https://www.lungevity.org/about-lung-cancer/lung-cancer-101/types-of-lungcancer. lungcancer. Accessed October 2022.
- 4. Cagle P, et al. Lung Cancer Biomarkers: Present Status and Future Developments. Archives of Pathology Lab Med. 2013; 137: 1191–1198.
- 5. Goldstraw P, Chansky K, Crowley J, et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. *J Thorac Oncol*. 2016;11(1):39-51.
- 6. Aupérin A, Le Péchoux C, Rolland E, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. *J Clin Oncol*. 2010;28(13):2181-2190.
- 7. Nadler E, Arondekar B, Aguilar KM, et al. Treatment patterns and clinical outcomes in patients with advanced non-small cell lung cancer initiating first-line treatment in the US community oncology setting: a real-world retrospective observational study. *J Cancer Res Clin Oncol*. 2021;147(3):671-690.
- 8. Reck M, Rodríguez-Abreu D, Robinson AG, et al. Five-Year Outcomes With Pembrolizumab Versus Chemotherapy for Metastatic Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score ≥ 50. *J Clin Oncol*. 2021;39(21):2339-2349.
- 9. Faivre-Finn C, Vicente D, Kurata T, et al. Four-Year Survival With Durvalumab After Chemoradiotherapy in Stage III NSCLC-an Update From the PACIFIC Trial. *J Thorac Oncol.* 2021;16(5):860-867.
- 10.Georgieva M, da Silveira Nogueira Lima JP, Aguiar P Jr, de Lima Lopes G Jr, Haaland B. Cost-effectiveness of pembrolizumab as first-line therapy for advanced non-small cell lung cancer. Lung Cancer. 2018 Oct;124:248-254.

© 2022. All rights reserved. IQVIA® is a registered trademark of IQVIA Inc. in the United States, the European Union, and various other countries.