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INTRODUCTION

With growing acceptance by clinical regulators of the value of real-world evidence to supplement
clinical trials, there is increasing interest in the use of Bayesian analysis for both experimental and
observational clinical studies[1]. Bayesian statistics provides a formal mathematical method for
combining prior information with current information at the design stage, during the conduct of a
study and at the analysis stage. This interest has been limited by the computational challenges of
applying the Markov-chain Monte-carlo (MCMC) approach to large real-world clinical data. The
variational approach minimises the distance between a postulated family of standard distributions
to approximate the posterior distribution rather than directly sampling from it as done by MCMC.
This optimisation approach is often significantly more computationally efficient than MCMC.

We investigate the performance and characteristics of currently available R and Python Variational
Bayes (VB) software for Bayes Latent Class Analysis (LCA) on an Electronic Health Records (EHR)
dataset with mixed continuous and binary data. This work extends the MCMC Bayesian model
described in Hubbard et al.[2]. The implementations include several algorithms for VB: coordinate
ascent mean-field, stochastic, automatic differentiation and two application-specific R packages. For
the baseline comparison we found implementations with predefined analytically derived objective
functions are computationally efficient with best predictive performance and low programming
complexity. However there are currently no closed-form solutions for real-world Bayes LCA using
VB so we are focusing on improving posterior accuracy and computational run time from default
settings for automatic VB methods.

Background
The LCA model is based on Hubbard et al.[2] and follows a general specification shown in table 1.

Table 1: Model specification for Bayesian latent variable model for EHR-derived phenotypes for the ith patient.
g(-) = exp(-)/ (1 +exp())

Latent Phenotype Availability of Biomarkers Clinical Codes Prescription
Biomarkers Medications
Example Type 2 Diabetes Availability of glucose Glucose or Diabetes ICD-9 code; Diabetes
or HbAlc data HbA1lc values Endocrinologist visits medication
Variable Di RU,‘]= 1,...,] Y’U’J = 1,...,J Wik!kz ) (— ,K Pﬂ,l= 1, ... ,L
Model D; ~ Bern(g(X;° + n;)) R;; ~ Bern( 9((15Xi,Di)ﬁf)) Yoy N((LXian)ﬁfa sz) Wik ~ Bern( 9((1,X15Di)l3;?/) Py ~ Bern( 9((1,Xi,Di)ﬂf))
Priors B° ~ MVN(0, Zp) B} ~ MVN(ug, Zp) B} ~ MVN(uy,Zy) B, ~ MVN(uy, Zyy) B, ~ MVN(up, Zp)

ni ~ Unif(a, b)

sz ~ InvGamma(c, d)

Abbreviations: N, normal; Bern, Bernoulli; MVN, multivariate normal; Unif, uniform; InvGamma, inverse gamma, HbA1lc, Hemoglobin Alc.

MAIN OBJECTIVE

Benchmark current VB software against MCMC in estimating the MCMC posterior model, predic-
tive performance and computational performance and complexity.

MATERIALS & METHODS

Baseline Comparison (Pima Indian data)

We analysed Pima Indian Type 2 Diabetes data [3]. The response, Y}, is the variable Outcome (diag-
nosed type 2 diabetes). The predictors, X;, are all continuous variables (Pregnancies, Glucose, Blood-
Pressure, SkinThickness, Insulin, BMI, DiabetesPedigree, Age). A logistic regression model was fitted to
all predictors. Two VB packages in R were compared (sparsevb and varbvs) and implementations of
CAVI and SVI from the Github of Durante and Rigon [4]. We included Stan MC to compare more
efficient Hamiltonian monte-carlo to Gibbs/Metropolis Hastings JAGS samping methods and the
Stan VB R packages. The Python package PyMC3 supports four VB methods that were included in
this study (Table 1). We applied 5-fold cross validation to the dataset to investigate the stability of
the models and for algorithms with hyperparameters we performed a grid search over a range for
each hyperparameter.

Table 2: Brief description of VB algorithms studied. Automatic methods do not require analytical derivation of the
ELBO objective function.

Algorithm Description Type Automatic Programming
CAVI Coordinate Ascent Variational Inference mean-field No R

Own VI ~ Own implementation of CAVI based on [5] mean-field No R

SVI Stochastic Variational Inference mean-field No R
varbvs Fast Variable Selection for Large-scale Regression mean-field No R
sparsevb  Spike-and-Slab VB for Linear and Logistic Regression mean-field No R

Stan MC  MCMC using No U-turn Hamiltonian monte-carlo MCMC (to compare with JAGS) No R

Stan VB Automatic Differentiation Variational Inference mean-field Yes R
ADVI Automatic Differentiation Variational Inference mean-field Yes Python
FRADVI  Full-rank Automatic Differentiation Variational Inference full-rank Yes Python
NFVI Normalizing Flow Variational Inference mean-field or full-rank Yes Python
ASVGD  Amortized Stein Variational Gradient Descent operator Yes Python

Bayes LCA Model (Optum™ data)

We applied the Hubbard et al. model shown in Table 1 to JAGS MCMC, Stan MCMC and Stan ADVI
VB. We could not use the same data as Hubbard et al. and instead used similar data from Optum ™.
We carefully selected Optum '™ data that aligns closely with the characteristics of the Hubbard et al.
data. The Optum ™ data includes two continuous biomarker laboratory measures; random plasma
glucose test and hemoglobin Alc (HbA1c) test. There are five indicator variables; visit to an endocri-
nologist, two diabetes medications (metformin and insulin) and diagnosis codes for type 1 and type
2 diabetes mellitus. In addition, there are three demographic variables; age at study baseline, BMI
z-score and whether the patient is from a high risk ethnicity for diabetes mellitus. To compare with
maximum likelihood LCA we compared with the R package clustMD. JAGS MCMC samples the
posterior distribution of all variables. Stan MC integrates out the binary latent variables and Stan
VB employs automatic differentiation variational inference. We translated the JAGS BUGS model
to Stan to be as as close as possible. This could have resulted in a less than optimum model as Stan
has several model reparamerterizations that could improve efficiency at the cost of very different
model definitions. For details please see the Reparamerterization section in part 2 of the Stan Users

Guide.

RESULTS

Baseline Comparison

Eleven VB methods were compared against MCMC. The mean and coefficient of variation of the
model coeftficients calculated over the 5 folds were compared with the MCMC baseline (Figure 1).
The heatmap indicates some variables are more challenging across multiple VB methods. For exam-
ple, SkinThickness, which is dominated by zero values.
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Figure 1: Coefficient mean as a proportion of MCMC model, empirical predictive performance. The programming en-
vironment is indicated by R for R programming and Py for Python programming

The predictive performances closest to MCMC were CAVI, SVI and varbvs. All three are mean-field
methods that require analytical derivation of the optimization ELBO for logistic regression (and any
other application) in contrast to automatic methods e.g. ADVI. Stan MC, and perhaps also Stan VB,
might benefit from model reparameterization as described in part 2 of the Stan users guide.

Bayes LCA Model

Table 3 shows the comparative results for the LCA models using JAGS MCMC, Stan MC and Stan
VB. Given the use of different real-world data sets for Hubbard et al. and our models the results are
quite similar. This LCA model has very good general applicability. The Stan VB model has gener-
ally high accuracy versus MCMC methods apart from mean shift in glucose. Our LCA models agree
with the Hubbard et al. conclusions that the latent phenotype approach may substantially improve
on the standard clinical rule-based phenotyping approaches.

Table 3: Comparison of LCA model results with Hubbard et al.
Posterior Mean (95% CI)

(a) Hubbard et al. (b) JAGS MCMC (c) Stan MC (d) Stan VB

N = 68,265 N =16,580 N = 16,580 N = 16,580
Mean shift in glucose 90.62 (90.25, 91.00) 89.30 (89.10,90.01) 88.59 (88.48, 88.71) 22.8 (21.06, 24.92)
Mean shift in HbAlc 3.15 (3.06, 3.24) 4.80 (4.72,4.81) 4.77 (4.76,4.78) 4.77 (4.75,4.78)
T2DM code sensitivity 0.17 (0.15, 0.20) 0.15(0.12, 0.18) 0.10 (0.09, 0.11) 0.12 (0.1, 0.12)
T2DM code specificity 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (0.99, 1.00) 0.99 (0.99, 0.99)
Endocrinologist visit code sensitivity 0.94 (0.92, 0.95) 0.18 (0.15, 0.21) 0.20 (0.18, 0.21) 0.22 (0.19, 0.22)
Endocrinologist visit code specificity 0.93 (0.93, 0.94) 0.99 (0.98, 0.99) 0.98 (0.97, 0.99) 0.97 (0.97, 0.99)
Metformin code sensitivity 0.31 (0.28, 0.35) 0.40 (0.36, 0.44) 0.21 (0.20, 0.21) 0.19 (0.19, 0.20)
Metformin code specificity 0.99 (0.99, 0.99) 0.98 (0.98, 0.99) 0.93 (0.92, 0.93) 0.93 (0.92, 0.94)
Insulin code sensitivity 0.66 (0.61, 0.70) 0.55 (0.51, 0.59) 0.35 (0.31, 0.35) 0.20 (0.19, 0.20)
Insulin code specificity 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (0.99, 1.00) 1.00(0.99, 1.00)

To complete the LCA study, we used the R package clustMD to compare the Bayesian approach
to a maximum likelihood (MLE) approach. The latent cluster means for glucose and HbAlc are
close to the Bayesian LCA results. The MLE approach cannot be compared with the sensitivity and
specificity as those require priors.
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Figure 2: Cluster mean centres from the R package clustMD. The T2D latent variable is cluster 2

CONCLUSIONS

¢ In the baseline Pima Indian data, mean-field methods with analytical derivations for the ELBO
have best predictive power and computational performance without complex hyperparameteri-
zation.

* More general methods such as ADVI are very sensitive to hyperparameter settings and might
require many iterations to achieve ELBO optimization.

e A significant advantage of applying variational Bayes to LCA is overcoming the label switching
problem that multi-chain MCMC are subject to.

FORTHCOMING RESEARCH

Comparison with maximum likelihood suggests some variables are not important to the LCA
model. It might be useful to create a solution for variable selection in Bayesian LCA especially in
the clinical observational context where there can be many variables as well as very large numbers
of observations. Variable selection in Bayesian LCA is a potentially novel avenue for further re-
search. The pros and cons of integrating out categorical latent variables rather than estimating their
posterior distributions, as is the mechanism in Stan, might benefit from a detailed investigation for
accuracy and flexibility given the prevalence of discrete variables in clinical data.
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