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ATE are at the heart of clinical and policy decision making, used to derive ICER and INB.

More nuanced decision-making accounting for heterogeneity in treatment effect may 

yield greater population health gains [1-3].

Clinicians and payers have focused more on considerations at the subgroup- and 

individual levels. 

Patients and clinicians want to know what the outcomes of a treatment is for them, not 

for an average individual.

The 𝐼𝑇𝐸 for individual 𝑖 with a vector of 

individual-specific predictors 𝑋 = 𝑥𝑖 can be 

defined as:

𝐼𝑇𝐸 𝑥𝑖 = 𝐸[𝑌𝑖
𝑎=1|𝑋 = 𝑥𝑖]−𝐸[𝑌𝑖

𝑎=0|𝑋 = 𝑥𝑖]

The 𝐴𝑇𝐸(𝐸[𝑌𝑖
𝑎=1]−𝐸[𝑌𝑖

𝑎=0]) is equal to the 

average of the 𝐼𝑇𝐸𝑠 𝐸[𝑌𝑖
𝑎=1 − 𝑌𝑖

𝑎=0 .

Identification Assumptions of ITE are the 

same as ATE, including consistency, 

conditional exchangeability, positivity, no 

interference.

1. What Data Is Required for ITE Estimation?

ITE is essentially a highly conditional average treatment effect and can be realistically 

derived from large, well-designed, real-world studies.

2. Why use ML to Estimate ITE?

ML identify potential subgroups and select covariates (NICE real-world evidence 

framework June 2022). ML flexibly model complex interactions between treatment and 

high-dimensional individual characteristics. ML are not substitutes for content knowledge 

and clinicians’ opinions.

3. Outcomes

ML should focus on the potential outcomes instead of just the difference between them

4. Uncertainty Quantification makes ML more trustworthy and facilitate safer and more 

consistent treatment decisions.

5. Parameters focus on TTE outcome, baseline risk, related measures of treatment effect, 

HRQoL and costs.

Risk of Bias in Causal Inference

• General to All Observational Studies

1. Selection Bias

2. Confounding

3. Collider Bias

4. Measurement Error

• Specific to Longitudinal Analysis

1. Loss to Follow-Up

2. Exposure Affected Time-varying Confounding

3. Immortal Time Bias

We extract data based on:

• the available data (cross-sectional or longitudinal);

• the outcome of interest (continuous, binary or TTE);

• whether handle observed or unobserved confounders;

• whether quantify uncertainties of treatment effects or predicted outcomes;

• software implementation (R, Python or Stata).

Most ML methods:

• are designed for binary or continuous outcomes, require large samples;

• handle baseline confounding, assume no hidden confounding;

• not quantify uncertainty of both the predicted outcomes and treatment.

In chronic conditions, treatments are sustained over time and we study a dynamic 

treatment regime.

Survival model should account for potential bias from:

• non-randomised treatment assignment (confounding),

• informative censoring,

• event-induced covariate shift [17].

Modeling competing risks is another challenge.

1. Most ML for ITE estimation can handle confounding at baseline but not time-varying or 

hidden confounding.

2. ML accounting for time-varying confounding are developed mostly for use with 

continuous or binary outcomes.

3. Most ML methods do not quantify uncertainty of treatment effects estimates or predicted 

outcomes, especially in longitudinal settings. 

4. Modeling assumptions should be properly assessed before making causal conclusions.

5. No ML can estimate ITE for TTE outcomes AND account for time-varying confounders.
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Figure 1: Optimal treatment strategy based on 
potential outcomes 

Table 1: Methods to Estimate ITE in Static Settings

Table 2: Methods to Estimate ITE in Longitudinal Settings
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