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ML Methods to Estimate ITE in Static Setting

Introduction

ATE are at the heart of clinical and policy decision making, used to derive ICER and INB.

Most ML methods:

- : : L « are designed for binary or continuous outcomes, require large samples;
More nuanced decision-making accounting for heterogeneity in freatment effect may

_ , , « handle baseline confounding, assume no hidden confounding;
yvield greater population health gains [1-3].

N _ , * not quantify uncertainty of both the predicted outcomes and freatment.
Clinicians and payers have focused more on considerations af the subgroup- and
L Table 1: Methods to Estimate ITEin Static Settings
individual levels.
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Patient profile

same as ATE, including consistency,
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Figure 1: Optimal treatment strategy based on

conditional exchangeability, positivity, no
= Y. P Y potential outcomes

interference. , . , , ,
INn chronic condifions, freatments are sustained over fime and we study a dynamic

treatment regime.

Challenges in Estimating ITE

Table 2: Methods to Estimate ITEin Longitudinal Settings
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framework June 2022). ML flexibly model complex interactions between treatment and

high-dimensional individual characteristics. ML are not substitutes for content knowledge

ML Methods to Estimate ITE for TTE Outcomes

and clinicians’ opinions.

3. Outcomes
, , . , Survival model should account for potential bias from:
ML should focus on the potential outcomes instead of just the difference between them
. * non-randomised treatment assignment (confounding),
4. Uncertainty Quantification makes ML more frustworthy and facilitate safer and more
_ o » informative censoring,
consistent freatment decisions.

5. Parameters focus on TTE outcome, baseline risk, related measures of tfreatment effect, + event-induced covariate shitt [17].

HRQoL and costs. Modeling competing risks is another challenge.
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Figure 2: A taxonomy of statistical and machine learming individuabized treatment effects estimation methods for use in HTA
(Legend: O: observed confounding; U: unobserved confounding; B: binary outcome; C: continuous outcome, TTE: time to-event cutcome. )

Conclusions and Discussions

» Specific to Longitudinal Analysis Static setting Longitudinal setting
1. Loss to Follow-Up
2. Exposure Affected Time-varying Confounding

3. Immortal Time Bias

Summarize ML Algorithms 1.

We extract data based on:

Most ML for ITE estimation can handle confounding at baseline but not time-varying or
hidden confounding.

2. ML accounting for fime-varying confounding are developed mostly for use with

the available data (cross-sectional or longitudinal); . .
continuous or binary outcomes.

th t fint t i , b TTE); . . : :
e outcome of interest (continuous, binary or TTE) 3. Most ML methods do not quantify uncertainty of treatment effects estimates or predicted

whether handle observed or unobserved confounders; : : . :
outcomes, especially in longitudinal seffings.

heth tif tainti f freat t effect dicted out ; : : : :
whether quantity uncerainties ot frediment efrecls or predicied outcomes 4. Modeling assumptions should be properly assessed before making causal conclusions.

ft Impl tati R, Pyth Stata). : . .
soffware implementation (R, Python or Stata) 5. No ML can estimate ITE for TTE outcomes AND account for time-varying confounders.
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