Machine Learning for Estimating Individualized Treatment Effect from Real World Data for Use in Health Technology Assessment

Yingying Zhang¹ Noemi Kreif¹ Vijay Gc² Andrea Manca¹

1. Centre for Health Economics, University of York, York, UK 2. School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK

Contact email: yingying.zhang@york.ac.uk, andrea.manca@york.ac.uk

Introduction

ATE are at the heart of clinical and policy decision making, used to derive ICER and INB. More nuanced decision-making accounting for heterogeneity in treatment effect may yield greater population health gains [1-3].

Clinicians and payers have focused more on considerations at the subgroup- and individual levels.

Patients and clinicians want to know what the outcomes of a treatment is for them, not for an average individual.

From ATE to ITE

The ITE for individual i with a vector of individual-specific predictors $X = x_i$ can be defined as:

 $ITE(x_i) = E[Y_i^{a=1}|X = x_i] - E[Y_i^{a=0}|X = x_i]$ The $ATE(E[Y_i^{a=1}]-E[Y_i^{a=0}])$ is equal to the average of the $ITEs(E[Y_i^{a=1} - Y_i^{a=0}))$.

Identification Assumptions of ITE are the same as ATE, including consistency, conditional exchangeability, positivity, no interference.

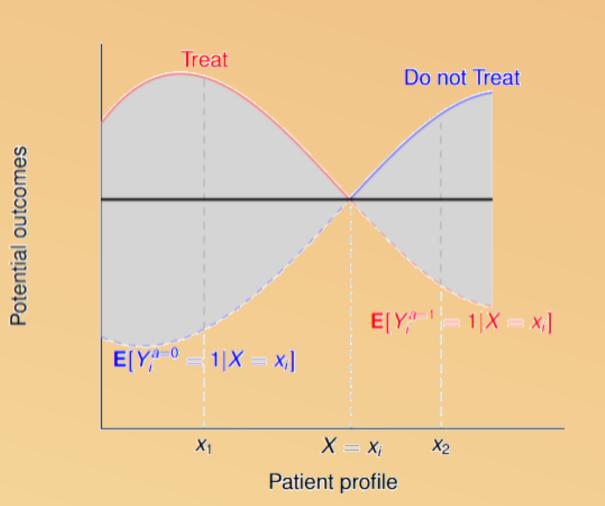


Figure 1: Optimal treatment strategy based on potential outcomes

Challenges in Estimating ITE

1. What Data Is Required for ITE Estimation?

ITE is essentially a highly conditional average treatment effect and can be realistically derived from large, well-designed, real-world studies.

2. Why use ML to Estimate ITE?

ML identify potential subgroups and select covariates (NICE real-world evidence framework June 2022). ML flexibly model complex interactions between treatment and high-dimensional individual characteristics. ML are not substitutes for content knowledge and clinicians' opinions.

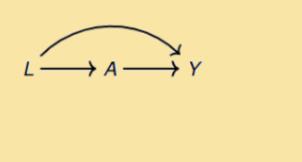
3. Outcomes

ML should focus on the potential outcomes instead of just the difference between them

- 4. Uncertainty Quantification makes ML more trustworthy and facilitate safer and more consistent treatment decisions.
- 5. Parameters focus on TTE outcome, baseline risk, related measures of treatment effect, HRQoL and costs.

Risk of Bias in Causal Inference

- General to All Observational Studies
- 1. Selection Bias
- 2. Confounding
- 3. Collider Bias
- 4. Measurement Error



Time-varying confounding

Baseline Confounding

Static setting

affected by prior treatment

Longitudinal setting

- Specific to Longitudinal Analysis
 - 1. Loss to Follow-Up
- 2. Exposure Affected Time-varying Confounding
- 3. Immortal Time Bias

Summarize ML Algorithms

We **extract data** based on:

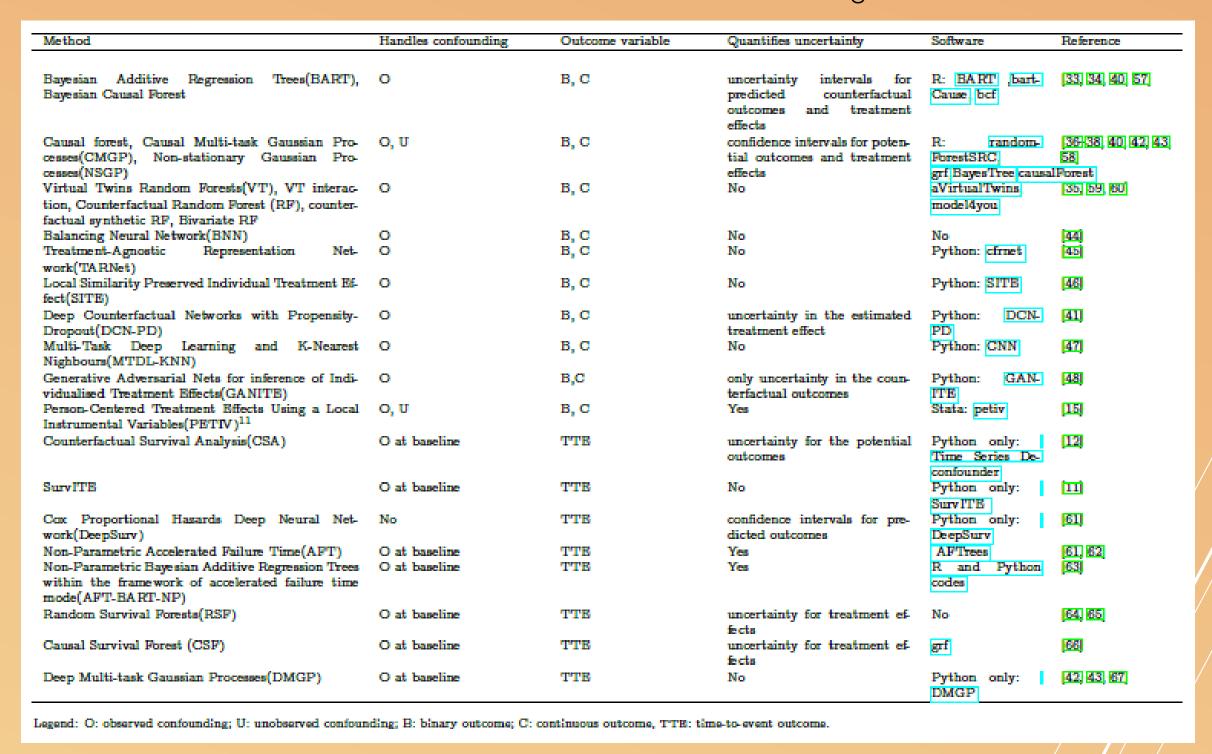
- the available data (cross-sectional or longitudinal);
- the outcome of interest (continuous, binary or TTE);
- whether handle observed or unobserved confounders;
- whether quantify uncertainties of treatment effects or predicted outcomes;
- software implementation (R, Python or Stata).

ML Methods to Estimate ITE in Static Setting

Most ML methods:

- are designed for binary or continuous outcomes, require large samples;
- handle baseline confounding, assume no hidden confounding;
- not quantify uncertainty of both the predicted outcomes and treatment.

Table 1: Methods to Estimate ITE in Static Settings



ML Methods to Estimate ITE in Longitudinal Setting

In chronic conditions, treatments are sustained over time and we study a dynamic treatment regime.

Table 2: Methods to Estimate ITE in Longitudinal Settings

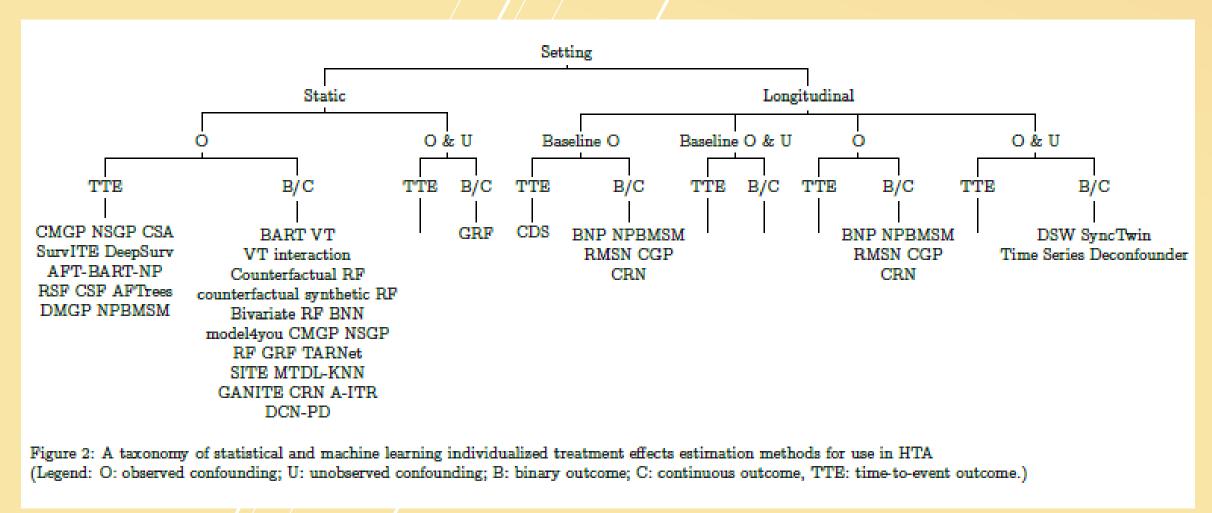
fethod	Time-varying confounding	Baseline con- founding	Outcome variable	Quantifies uncertainty	Software	Referenc
Bayesian Non-parametric Method(BNP)	О	o	С	uncertainty for treatment ef-	No	500
Bayesian Treatment Response Curves(BTRC)	No	No	С	No	No	50
Counterfactual Gaussian Process(CGP)	0	0	С	confidence intervals for pre- dicted outcomes	No	51
Recurrent Marginal Structural Net- works(RMSN)	0	0	B, C	No	Python only: RMSN	52
Counterfactual Recurrent Network(CRN)	0	0	B, C	No	Python only: CRN	53
Deep Sequential Weighting(DSW)	O, U	O, U	С	No	Python only: DSW	bb
SyncTwin	0	0	C	No	synth control	54
Pime Series Deconfounder	O, U	O, U	B, C	No	Python only	56
Causal Dynamic Survival Model(CDS)	No	0	TTE	Yes	Python only: CDS	88

ML Methods to Estimate ITE for TTE Outcomes

Survival model should account for potential bias from:

- non-randomised treatment assignment (confounding),
- informative censoring,
- event-induced covariate shift [17].

Modeling competing risks is another challenge.



Conclusions and Discussions

- 1. Most ML for ITE estimation can handle confounding at baseline but not time-varying or hidden confounding.
- 2. ML accounting for time-varying confounding are developed mostly for use with continuous or binary outcomes.
- 3. Most ML methods do **not quantify uncertainty** of treatment effects estimates or predicted outcomes, especially in longitudinal settings.
- 4. Modeling assumptions should be properly assessed before making causal conclusions.
- 5. No ML can estimate ITE for TTE outcomes AND account for time-varying confounders.

