

Utrecht University

To Merge Randomized Controlled Trials and Real-world Evidence with Bayesian Network Metaregression: A Case Study in Patients with Myelodysplastic Syndromes

Li Jiu1, Junfeng Wang1, Rick A Vreman1,2, Aukje K Mantel-Teeuwisse1, Wim G Goettsch1,2

1 Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands 2 National Health Care Institute, Diemen, The Netherlands

Background & Objective

- Randomized controlled trials (RCTs) and realworld evidence (RWE) are often synthesized separately in health technology assessment (HTA).
- One reason is that RCTs and RWE show great heterogeneity in methodology and risk of bias which makes merging the two data sources technically difficult.
- To address this problem, Bayesian Network Meta-regression (BNMR) models have been applied for evidence synthesis in the HTA setting.
- Hence, we aimed to estimate and compare the performance of existing BNMR models in a case study of Myelodysplastic Syndromes (MDS).

Method - Meta-analysis

Case

- Data source: Song et al. (2021);
- Target population: Patients with acute myeloid leukemia and myelodysplastic syndromes;
- Intervention: Reduced intensity conditioning (RIC);
- Comparator: Myeloablative conditioning
- Outcomes of interest: Overall survival (Binary outcome).

Identification of BNMR models using the snowballing approach, according to Wohlin (2016)

Website that supports the snowballing
approach:

approach:

Connected Papers;

- Starting from two identified reviews of appraisal tools: Jenkins et al. (2021) & Zhang et al. (2019)
- Eligibility criteria: (1) Bayesian model; (2)
 The model supported binary outcomes; (3)
 Codes for running a model were available.

Data collection & preparation

- Characteristics of BNMR models;
- Codes used to run the BNMR models;
 - Covariates: age, duration of follow up.

Model running

- R package: Crossnma & R2jags;
- Initial value set in the BNMR models: Null;
- Number of iterations of Bayesian meta-
- regression: 50000; Number of burn-in iterations: 20000;
- Number of Markov chains: 4Number of thining of Markov chains: 1.

Model comparison

Comparison of mean and confidence interval in a forest plot.

RESULTS

Figure 1. Flow chart of the BNMR models for comparison

Study		Survival (RIC)		Survival (MAC)		Log Odds Ratio	Forest plot
Pullipp 2830 23 14 31 25 0.12 [-0.25, 0.49] Pullipp 2830 40 23 44 45 25 24 24 24 24 24	Study	Yes	No	Yes	No	95% CI	
Martino2012 67 59 402 316 -0.05 [-0.21, 0.12]	Shimoni2012	47	59	43	42	-0.11 [-0.36, 0.14]	•
Light 2012 344 697 1269 2462 -0.02 [-0.08, 0.04]	Philipp2010	23	14	31	25	0.12 [-0.25, 0.49]	H H H
Rimonbo 14	Martino2012	67	59	402	316	-0.05 [-0.21, 0.12]	
Minamoto2014 34 47 15 18 -0.09 [-0.44, 0.26]	Luger2012	344	697	1269	2462	-0.02 [-0.08, 0.04]	
Boundary 32 15 80 37 -0.01 [-0.32, 0.31]	Khabori2011	20	19	30	32	0.05 [-0.3, 0.4]	H - H
Sortical	Hiramoto2014	34	47	16	18	-0.09 [-0.44, 0.26]	H H H
Sect1207 93 44 105 30 -0.22 [-0.45, 0.02]	Lioure2012	32	15	80	37	-0.01 [-0.32, 0.31]	H ar t
Ringden2013 14 4 12 7 0.31 [-0.32, 0.94]	Bornhauser2012	57	37	52	38	0.05 [-0.2, 0.31]	·
MC FludT.14/L Trial 12018 98 54 101 67 0.08 [-0.12, 0.28] Roggar 2017 50 15 40 24 0.3 [-0.0, 0.6] HB- Benchmauser 2012 32 67 36 60 -0.1 [-0.16, 0.16] HB- Benchmauser 2012 135 105 157 63 0.25 [-0.46, 0.12] H- AL Rocecte events as inputs AL Leopfor a inputs AL Leopfor a inputs AL Leopfor a inputs BL Developed from Schmitz, Adoms, and Wolsh 2013 0.45 [-0.16, 0.03] H- BL Logical events as inputs CL Discrete fevents as in	Scott2017	93	44	105	30	-0.22 [-0.45, 0.02]	•
Registral So 15 40 24 0.3 [0.03 (.61) Held	Ringden2013	14	4	12	7	0.31 [-0.32, 0.94]	⊢ •−
8 mehanuse 2012 32 67 36 60 -0.1 [-0.36, 0.16]	MC-FludT.14/L.Trial I2018	98	54	101	67	0.08 [-0.12, 0.28]	
Beelen 2819 135 105 157 63 -0.29 [-0.46, -0.12]	Kroger2017	50	15	40	24	0.3 [-0.03, 0.63]	H =H
Al. Discrete events as injusts 0.06 [0.05, 0.07] 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Bornhauser2012	32	67	36	60	-0.1 [-0.36, 0.16]	
AL Discrete events as inputs AL Developed to inputs AL Developed from Schmitz, Adams, and Walsh 2013 AL Discrete events as inputs AL Discrete events as	Beelen2019	135	105	157	63	-0.29 [-0.46, -0.12]	
A2. LogOR as inputs A3. Developed from Schmitz, Adams, and Walsh 2013 A3. Developed from Schmitz, Adams, and Walsh 2013 A3. Developed from Schmitz, Adams, and Walsh 2013 A4. Developed from Schmitz, Adams, and Walsh 2013 A5. Developed from Schmitz, Marinho, Salnati, Figgins, and Ades 2010 A5. Developed from Verde 2020 A5. Developed from Verde 20	Overall						
AL Developed from Schmitz, Adams, and Walsh 2013 BL Dispete events an injust Copic an injust Copic and injust Copic	A1. Discrete events as inputs					0.06 [0.05, 0.07]	+++
8.0. Decetor events as inputs 8.0. LogOR in inputs 9.0. Export in inputs 10. Developed from Schmitz, Adiams, and Walsh 2013 10. Pietric for men and y 10. Developed from Schmitz, Adiams, and Walsh 2013 10. Pietric for men and y 10. Pietric for men and y 10. Pietric for men and y 10. Developed from Schmitz, Adiams, and Walsh 2013 10. Pietric for Medit mean and yearchian 10. Developed from Schmitz, Adiams, and Walsh 2013 10. Pietric for Medit mean and yearchian 10. Developed from Schmitz, Moveridi, Debryr, Samara, Belger, Siontiis, and et al 2817 10. Revensing variance of Milks through prior distribution of both Nitks and RCts 10. Increasing variance of Niks through prior constraint 10. Revensing variance of Niks through uniform prior 10. Revensing variance of Niks through variance of Miles through uniform prior 10. Revensing variance of Niks through variance of Niks through uniform prior 10. Revensing variance of Niks through variance of Niks through uniform prior 10. Revensing variance of Niks through variance of Niks through uniform prior 10. Revensing variance of Niks through variance of Niks through variance of Niks through uniform prior 10. Revensing variance of Niks through variance of Ni	A2. LogOR as inputs					-1.14 [-1.22, -1.06]	· · · · · · · · · · · · · · · · · · ·
### 0.4 (0.1)	A3. Developed from Schmitz, Adams, and Walsh 2013					0.54 [0.27, 1.16]	+
B. Developed from Schmitz, Adoms, and Walsh 2013 PH	B1. Discrete events as inputs					0.08 [0.08, 0.09]	₩
CL Discrete events as inputs CL Discrete events as inputs -0.14 [-0.15, -0.13] -0.14 [-0.15, -0.13] -0.14 [-0.15, -0.13] -0.14 [-0.15, -0.13] -0.14 [-0.15, -0.13] -0.15 [-0.15, -0.13] -0.15 [-0.15, -0.11] -0.15 [-0.15, -0.11] -0.16 [-0.15, -0.11] -0.17	B2. LogOR as inputs					-0.99 [-1.05, -0.93]	├
C2. Logoda is injust -0.14 [-0.15, -0.13] I → □ C3. Developed from Schmitz, Adams, and Walsh 2013 0.3 [-0.5, -2.] I → □ D. Prior for men only -0.15 [-0.5, -0.1] I → □ D2. Prior for both mean and precision -0.15 [-0.15, -0.1] I → □ D2. Developed from (Pithnious, Moveldit), Debray, Samara, Belger, Siontis, and et al 2017 0.32 [-0.2, -0.4] IM E1. Increasing variance of NRSs through prior distribution of both NRSs and RCTs -0.12 [-0.14, -0.1] I → □ E2. Increasing variance of NRSs through prior constraint -2.17 [-2.77, -2.66] I → □ E3. Adjusting for probability in internal walifity his via prior prior internal walifity his via brough uniform prior -0.12 [-0.14, -0.11] I → □ E4. Adjusting for probability in internal walifity his via brough uniform prior -0.12 [-0.12, -0.11] I → □ E5. Developed from New Wellon, Marinho, Salant, Figgins, and Ades 2010 0.42 [-0.3, -0.2] III E6. Developed from Verde/2020 0.59 [-0.3, 1.3] III	B3. Developed from Schmitz, Adams, and Walsh 2013					0.43 [0.31, 0.61]	H
C3. Developed from Schmitz, Adams, and Waish 2013 10. Prior for mean only 10. Developed from Eithimiou, Movridis, Debray, Samara, Belger, Siontis, and et al 2017 10. Developed from Eithimiou, Movridis, Debray, Samara, Belger, Siontis, and et al 2017 10. Developed from Eithimiou, Movridis, Debray, Samara, Belger, Siontis, and et al 2017 10. Surgical for Eithimiou, Movridis, Debray, Samara, Belger, Siontis, and et al 2017 10. Surgical for Eithimiou, Movridis, Debray, Samara, Belger, Siontis, and et al 2017 10. Surgical for Eithimiou, Movridis, Debray, Samara, Belger, Siontis, and et al 2017 10. Surgical for Probability of Internal validity bias through uniform prior 10. Eveloped from Dias, Welton, Marindo, Salanti, Figgins, and Ades 2010 10. Surgical for Probability of Internal validity bias through uniform prior 10. Surgical for Probability Grant Bias, Welton, Marindo, Salanti, Figgins, and Ades 2010 10. Surgical for Probability Grant Bias, Welton, Marindo, Salanti, Figgins, and Ades 2010 10. Surgical for Probability Grant Bias, Welton, Marindo, Salanti, Figgins, and Ades 2010 10. Surgical for Probability Grant Bias, Welton, Marindo, Salanti, Figgins, and Ades 2010 10. Surgical for Probability Grant Bias Probabil	C1. Discrete events as inputs					0.02 [0.01, 0.02]	₩-
0.1 Prior for mean only O.2. Prior for both mean and precision O.3. Developed from Ethinious, Mavridiis, Debrny, Samara, Belger, Siontis, and et al 2017 O.3. Developed from Ethinious, Mavridiis, Debrny, Samara, Belger, Siontis, and et al 2017 O.3. Developed from Ethinious, Mavridiis, Debrny, Samara, Belger, Siontis, and et al 2017 O.3. Developed from Ethinious, Mavridiis, Debrny, Samara, Belger, Siontis, and et al 2017 O.3. Li Carcasing waitines of NRSs through prior distribution of both NRSs and RCTs O.3. Li Cart, 7., 2-66 O.3. Li Cart, 7., 2-67 O.3. Li Cart, 7., 2-66 O.3. Li Cart, 7., 2-67 O.3. Li Cart, 7., 2-	C2. LogOR as inputs					-0.14 [-0.15, -0.13]	
0.2. Prior for both mean and specifism O.3. Developed from 19thmios, Neuvidis, Debray, Samara, Belger, Siontlis, and et al 2817 O.32 (0.22, 0.46) M 1.2. Increasing variance of NRSs through prior distribution of both NRSs and RCS 1.2. Increasing variance of NRSs through prior constraint 1.3. Adapting for probability of internal validity bias by incorporating the number of different study types 1.4. Adapting for probability of internal validity bias through uniform prior 1.5. Developed from 100s, Wetton, Marinho, Salanti, Higgins, and Ades 2010 0.59 (0.31, 3.3) 1. □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	C3. Developed from Schmitz, Adams, and Walsh 2013					0.43 [0.05, 1.2]	₩
D3. Developed from Efthiniou, Movridis, Debray, Samara, Belger, Siontis, and et al 2017 1. Increasing variance of NRSs through prior distribution of both NRSs and RCTs 2.71 [-7.7266] 2.71 [-7.7266] 2.71 [-7.7266] 3. Adjusting for probability of internal validity bias through uniform prior 4. Adjusting for probability of internal validity bias through uniform prior 5. Developed from Dias, Welton, Marinbo, Salanti, Higgins, and Ades 2010 0.42 [-0.30.51] 6. Developed from Verde 2020	D1. Prior for mean only					-0.13 [-0.15, -0.11]	→
EL. Increasing variance of NRSs through prior distribution of bath NRSs and RCTs EL. Increasing variance of NRSs through prior constraint EL. Increasing variance of NRSs through prior constraint EL. Adjusting for probability of internal validity has by increporating the number of different study types EL. Adjusting for probability of internal validity has been such through uniform prior EL. Adjusting for probability of internal validity has been such through uniform prior EL. Adjusting for probability of internal validity has been strong prior prior to the such prior through uniform prior EL. Developed from Variance Scienti, Niggins, and Ades 2010 Oz. (2), 0.62 P. (3), 0.52 P. (4), 0.51 EL. (4), 0.51 Oz. (2), 0.52 P. (5), 0.52 P. (6), 0.53 EL. (6), 0.51 EL. (7), 0.55 EL. (7), 0.55 EL. (8), 0	D2. Prior for both mean and precision					-0.1 [-0.11, -0.1]	H+I
E2. Increasing variance of NRSs through prior constraint E3. Adjusting for probability of internal validity bias by incorporating the number of different study types E4. Adjusting for probability of internal validity bias by incorporating the number of different study types E5. Developed from Dias, Welton, Marinho, Salanti, Higglin, and Ades 2010 E6. Developed from Verde/2020 E7. Developed from Verde/2020	D3. Developed from Efthimiou, Mavridis, Debray, Samara, Belger, Siontis, and et al 2017					0.32 [0.22, 0.46]	M .
E3. Adjusting for probability of internal validity his to proporating the number of different study types -0.2[-0.21, 0.15] -0.2[-0.12, 0.15] -0.2[-0.12, 0.11] -0.2[-0.12, 0.11] -0.2[-0.12, 0.11] -0.2[-0.12, 0.11] -0.3[-0.12, 0.12] -0.4[-0.12, 0.12] -0.4[-0.12, 0.12] -0.5[-0.12, 0.13] -0.5[-0.12, 0.13] -0.5[-0.12, 0.13]	E1. Increasing variance of NRSs through prior distribution of both NRSs and RCTs					-0.12 [-0.14, -0.11]	→
E4. Adjusting for probability of internal validity bias through uniform prior 55. Developed from Dias, Welton, Marinho, Salanti, Higgins, and Ades 2010 65. Developed from Verde2020 65. Developed from Verde2020						-2.71 [-2.77, -2.66]	—
ES. Developed from Dias, Welton, Marinho, Salanti, Higglins, and Ades 2010 0.42 (0.3, 0.62) BH E6. Developed from Verde/2020 0.59 (0.33, 1.3] H→—1	E3. Adjusting for probability of internal validity bias by incorporating the number of different study types					-0.2 [-0.21, -0.19]	→
E6. Developed from Verde2020 0.59 [0.33, 1.3]							⊢
•							PI PI
Figure 2 Forest plot	E6. Developed from Verde2020					0.59 [0.33, 1.3]	+
	Eiguro 2 Egroct r	alot				-8	-6 -4 -2 0 2 4

Figure 2. Forest plot

CONCLUSION

- Estimates obtained from the BNMR models are sensitive to model algorithms.
- Further research is needed to confirm our findings by validating these algorithms in other case studies.

Reference

Song Y, Yin Z, Ding J, Wu T. Reduced Intensity Conditioning Followed by Allogeneic Hematopoietic Stem Cell Transplantation Is a Good Choice for Acute Myeloid Leukemia and Myelodysplastic Syndrome: A Meta-Analysis of Randomized Controlled Trials. Frontiers in oncology. 2021 Oct 7;11:708727.

Jenkins DA, Hussein H, Martina R, Dequen-O'Byrne P, Abrams KR, Bujkiewicz S. Methods for the inclusion of real-world evidence in network meta-analysis. BMC medical research methodology. 2021 Dec;21(1):1-9. Zhang K, Arora P, Sati N, Béliveau A, Troke N, Veroniki AA, Rodrigues M, Rios P, Zarin W, Tricco AC. Characteristics and methods of incorporating randomized and nonrandomized evidence in network meta-analyses: a scoping review. Journal of Clinical Epidemiology. 2019 Sep 1;113:1-0.

Wohlin C. Second-generation systematic literature studies using snowballing. InProceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering 2016 Jun 1 (pp. 1-6).