

ECONOMIC EVALUATION OF ISAVUCONAZOLE VERSUS VORICONAZOLE FOR THE TREATMENT OF PATIENTS WITH POSSIBLE INVASIVE ASPERGILLOSIS IN

BRAZILIAN PRIVATE HEALTHCARE SYSTEM

Araujo G¹; Murta, L²; Penetti R¹

1- Knight Therapeutics, São Paulo, SP, Brazil 2- Origin Health Intelligence, Rio de Janeiro, RJ, Brazil

INTRODUCTION

Patients with invasive mold infections (IMI) commonly require hospital admissions and may present a large variety of clinical manifestations that represents diagnostic and therapeutic challenges for the Brazilian's Health System.¹ In 2019, isavuconazole was approved in Brazil, by Brazilian Health Regulatory Agency (Anvisa) for the treatment of invasive aspergillosis (IA) and invasive mucormycosis (IM). No economic evaluation of isavuconazole was performed from the perspective of the Brazilian health system since then. Therefore, the primary objective of this study was to assess the cost-effectiveness of isavuconazole compared to reference voriconazole for suspected IA in the Brazilian private healthcare system (PHS). The secondary objective was to assess the price acquisition of drugs impact in an economic evaluation of generic voriconazole versus isavuconazole without discount on list price, and generic and reference voriconazole with a 60% discount on price list.

METHODOLOGY

A 5-year decision-tree was developed from the PHS perspective. The model simulated the disease course and included the possibility of an IMI caused by IA versus IM, the possibility of receiving a second-line treatment (treatment with L-anfotericin B) as well as the probability of dying following an IA or IM infection (Figure 1). The model assumed that 5.75%² of the patients with possible IA have IM. It was also assumed that pathogen information would become available during the treatment course, in 6 days, for only 61%³ of patients, with differential diagnosis unavailable for the remainder. Efficacy parameters were extracted from SECURE/VITAL^{4,5} trials. Costs included treatment acquisition, hospitalization, and adverse events¹² (Table 1). Alternatives scenarios included 3- and 10-year time horizon and discount price of voriconazole. Deterministic and probabilistic sensitivity analyses were conducted. A willingness-to-pay of R\$ 40,688/QALY was considered.

RESULTS AND DISCUSSION

The base case analysis showed that isavuconazole was associated with a total cost saving of R\$ 95,204 per patient, when compared to reference voriconazole (Table 2). Considering generic voriconazole, isavuconazole was associated with a saving of R\$ 66,685 (Table 3). The discount simulation scenario showed that isavuconazole compared to reference or generic voriconazole with 60% discount on price list resulted in a saving of R\$ 46,333 and R\$ 34,926, respectively. (Table 2 and 3). Results were robust in sensitivity analyses (Figure 2). 3- and 10-year ICURs were also dominant (Table 4), relative to a willingness-to-pay threshold of R\$ 40,688/QALY. All scenarios showed that isavuconazole, probably because isavuconazole providing fewer monitoring exams, adverse events and reduction in length of hospital stay compared to voriconazole. Futhermore, isavuconazole has spectrum of action to IA and IM while voriconazole has only IA indication.

Figure 1: Decision-free model

Figure 2: Probabilistic Sensitivity Anallysis (PSA) scartter plot – Base Case

100% of simulations on the probabilistic sensitivity analysis are in the Southeast of the PSA scatter plot

Table 1: Costs 10,11,12

	Unit Cost	Reference	
Isavuconazole IV	R\$ 1,735	CMED, 2022	
Isavuconazole Oral	R\$ 327	CMED, 2022	
Voriconazole REF IV	R\$ 1,688	CMED, 2022	
Voriconazole REF Oral	R\$ 497	CMED, 2022	
Voriconazole REF 60% discount IV	R\$ 675	CMED, 2022 calculated	
Voriconazole REF 60% discount Oral	R\$ 199	CMED, 2022 calculated	
Voriconazole GEN IV	R\$ 1,097	CMED, 2022	
Voriconazole GEN Oral	R\$ 323	CMED, 2022	
Voriconazole GEN 60% discount IV	R\$ 439	CMED, 2022 calculated	
Voriconazole GEN 60% discount oral	R\$ 129	CMED, 2022 calculated	
L – Anfotericin B IV	R\$ 2,401	CMED, 2022	
Serum creatinine	R\$ 17.72	CBHPM, 2022	
Urinalysis	R\$ 20.71	CBHOM, 2022	
Liver function test	R\$90.18	CBHPM, 2022	
Hospitalisation	R\$ 3,779.24	UNIDAS 2017/2018	
AE: Cardiac disorders	R\$ 1,120.24	CBHPM, 2022	
AE: Hepatobiliary disordes	R\$ 827.10	CBHPM, 2022	
AE: Nephrotoxicity L – Anfotericin B	R\$ 3,924.60	Walsh et al, 2004; UNIDAS 2017/2018; Brunesteyn et al, 2007	

Table 3: Scenarios of voriconazole generic and voriconazole generic with a 60% discount results

	Voriconazole Generic	Isavuconazole
Total QALYs	2,52	2,61
Incremental QALYs		0,10
Total Costs	R\$ 483,611 R\$ 416,926	
Incremental Costs		- R\$ 66, 685
ICUR		DOMINANT
Scenario with a 60% discount		
Total QALYs	2,52	2,61
Incremental QALYs		0,10
Total Costs	R\$ 443,556 R\$ 408,630	
Incremental Costs	- R\$ 34.926	
ICUR		DOMINANT

AE: adverses events; IV: intravenous; REF: reference; GEN: generic, R\$: Brazilian currency

Table 2: Base case and scenario of voriconazole reference with a 60% discount results

	Voriconazole Reference	Isavuconazole	
Total QALYs	2,52	2,61	
Incremental QALYs		0,10	
Total Costs	R\$ 519,577 R\$ 424,373		
Incremental Costs		- R\$ 95,204	
ICUR		DOMINANT	
Scenario with a 60% discount			
Total QALYs	2,52	2,61	

Table 4: Scenarios of 3- and 10- year time horizon

	Voriconazole Reference	Isavuconazole
3 year		
Total QALYs	1,58	1,64
Incremental QALYs		0,06
Total Costs	R\$ 519,577	R\$ 424,373
Incremental Costs		- R\$ 95,204
ICUR		DOMINANT
10 year		

Incremental QALYs		0,10	Total QALYs	4,49	4,66
Total Costs	R\$ 457,942	R\$ 411,610	Incremental QALYs		0,17
Incremental Costs		- R\$ 46,333	Total Costs	R\$ 519,577	R\$ 424,373
ICUR		DOMINANT	Incremental Costs		- R\$ 95,204
			ICUR		DOMINANT

CONCLUSION

In comparison to voriconazole, isavuconazole is a cost-saving strategy for suspected IA treatment, regardless of it being the reference or generic voriconazole. When a 60% discount was applied in the price list of voriconazole, for simulation the Brazilian market practices,

isavuconazole maintained the result of the cost-saving strategy as well.

REFERENCES

Brown GD, Denning DW, Gow NA et al. Hidden killers: human fungal infections. Sci Transl Med 2012; 4: 165rv13. 2. Bitar D. et al. Population-Based Analysis of invasive fungal infections, France, 2001-2010. Emerging Infectious Diseases. 2014. Jul;20(7):1149-55. 3. Nucci M, Gloria AB, Lehugeur DS, et al. Invisive fungal diseases in haematopoietoc cell transplant recipientes and in patients with acute myeloid leukaemia or myelodysplasia in Brazil. 2012, Clinical Microbiology and Infection. 4. Maertens J.A.,Raad I., Marr K.A. et al A Phase III, Double-Blind, Randomized Study to Evaluate Safety and Efficacy of BAL8557 Versus Voriconazole for Primary Treatment of Invasive Fungal Disease Caused by Aspergillus Species or Other Filamentous Fungi. Clinical Study Report. Phase 3 (SECURE Study). ISN 9766-CL-0104. 2014. 5. Marty F.M., Ostrosky-Zeichner I., Cornely O. A. et al. Open-Label Study of Isavuconazole in the Treatment of Patients with Aspergillosis and Renal Impairment or of Patients with Invasive Fungal Disease Caused by Rare Moulds, Yeasts or Dimorphic Fungi. Clinical Study Report. Phase 3 (VITAL Study). ISN 9766-CL-0103/WSA-CS-003. 2014. 6. Giacomazzi J, Baethgen L, Carneiro LC, et al. The burden of serius human fungical infections in Brazil. Mycoses, 2016, 59, 145-150 7. Bruynesteyn, K., Gant V., McKenzie C., Pagliuca T., Poynton C., Kumar A. and Janes J.P. Acots-effectiveness analysis of acapofungin vs. liposomal amphotericin B for treatment of suspected fungal infections and the UK' European Journal of Haematology. 2007: 78(6), 532-539. 8. Walsh TJ., Teppler H., Donowitz GR., Maertens JA., Baden L., Conneiro DA., Bourque RR., Lupinacci RJ., Sable CA., and ePauw BE. Caspofungin versus liposomal amphotericin B for treatment of suspected fungal infections a differing antifungal therapy in patients with persistent fever and neutropenia. New England Journal of Medicine. 2004: 351(14), 1391-402. 9. Ministry of Health – CONITEC. Directizes metadológicas avaliação economica. PdF, Mayo,2022 . 10. Secretari

Improving healthcare decisions