
an end-to-end analytical pipeline to extract value from patient testimonials: extraction of topics discussed by patients.

Figure 1: Overview of the methodology
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The methodology is inspired by a recently introduced

topic extraction analytical pipeline based on the

comparison of semantics of testimonies, which has

been adapted with new steps ( ) to generalize the

method, improve its performances and the results

interpretation.

1- Data cleaning: Testimonies are cleaned to remove

special characters and non-informative elements, and to

isolate important information (see Figure 1).

2- Data pre-processing:

• Sentences transformation: Vector representations of

the testimonies (embeddings) capturing the meaning

of the testimonies are derived with Sentence-BERT

[4], a language pre-trained model based on BERT [5].

• Concentrate the signal: To concentrate the signal,

remove the noise and ease interpretation,

embeddings dimensionality is reduced to two using

the UMAP algorithm [6].

3- Modeling:

• Gather similar testimonies: Semantically related texts

are grouped together into an optimal number of

clusters (based on silhouette scores) using a

hierarchical clustering (HCA) [7].

❖ Anomaly deletion: In order to obtain more robust

clusters and improve their consistency, outliers of

each cluster are identified with Local Outlier Factor [8]

(LOF) and excluded.

❖ Semi-automated post-processing: HCA dendrogram’s

facilitates post-processing interventions by

automatically suggesting the clusters that can be

merged together or split into two subclusters.

4- Clusters’ interpretation and labelling :

❖ Sentiment analysis: To accompany the cluster’s

interpretation and to account for the polarity of the

testimonies that constitute them, a sentiment analysis

[9] is performed.

• Most representative clusters’ words: Clusters

understanding is assisted by the TF-IDF top scores

selection for word unigrams, bigrams and trigrams

inside each cluster. This provides the discriminative

words and phrases for each cluster.

• Labelling: Clusters are finally labelled manually based

on the most prevalent words and the sentiment of the

testimonies they group.

• Patients’ testimonies (e.g. posts on forums or

responses to questionnaires) provide valuable insights

to define and characterize patient-reported outcomes

(PRO), quality of life and patients’ perspective on their

disease.

• Traditional NLP methods used for the automatic

extraction of topics from textual data are based on the

frequency of co-occurrence of words in documents and

are therefore not adapted to the analysis of patient

testimonies which tend to be rather short texts and

where co-occurrences are rare.

• We present an innovative methodology, more

appropriate to the analysis of shorter texts such as

testimonies, which allows in the presented use case to

identify the items raised by 4474 patients' testimonies

of kaggle data from WebMD [1] on their use of strong

opiates.

CONCLUSION

The proposed method makes possible the

extraction of coherent topics from a large

volume of short texts in an automated and

efficient way. Applied to patients' testimonies,

such analysis provides strong insights on

patients’ perception about a wide range of

healthcare topics (side effects, treatment,

symptoms...), paving the way for better PRO

definitions and patient-centric evaluation, and

striving better adherence to treatments.
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• Tested on 4474 patients’ testimonies, the method provides 60 coherent and interpretable topics clusters, which

cover 9 different general themes

• Among the identified clusters, the most prevalent topics were related to treatment efficacy and side effects. Other

topics also reflect the fears of some patients regarding potential addictions to these treatments. Some clusters

contain testimonies that are too varied or rare to be grouped together: these clusters have been grouped into a

“messy" theme.

• Compared to previous works, the improvement of the clustering post-processing step makes the analysis pipeline

much faster to execute, especially on the costly part of interpreting the results, without altering the performance.

• The 15% of testimonies in a messy theme show that

the methodology is still perfectible, although the

results also depend on the richness of the data.

• To improve the fineness of the clusters, the method

can be improved by having more adapted

embeddings for each type of data (e.g. with a model

trained on sentences from the same field as the

testimonies)

• Medical expertise is required for the interpretation of

the results, so that the groupings, distinctions and

labelling of clusters are as relevant as possible.

OBJECTIVES

Building upon an efficient NLP topic modeling

method based on semantic proximity we

introduced recently [2][3], the objective is to

improve results coherence and interpretability

using a fit-for-purpose post processing step.
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Figure 2: Results visualization 
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