Functional class and health-related quality of life in patients with pulmonary arterial hypertension associated with congenital heart disease: Findings from a real-world study in the US

Jordan Awerbach¹, Mark Small², Megan Scott², Julia Harley², Carly J Paoli³, Gurinderpal Doad⁴, Sumeet Panjabi³

1 Center for Heart Care, Phoenix Children's, Phoenix, Arizona, United States (US); Departments of Internal Medicine and Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, US, 2 Adelphi Real World, Bollington, United Kingdom (UK); 3 Janssen Scientific Affairs, LLC., Titusville, New Jersey, US, 4 Janssen Pharmaceuticals, Inc., Titusville, New Jersey, US

INTRODUCTION

- Pulmonary arterial hypertension (PAH) is a progressive, incurable complication of some forms of congenital heart disease (CHD), imposing a high patient burden and impact on daily life, particularly as the disease progresses.
- Prevalence of PAH has been estimated to be between 5 and 10% in CHD patients.¹
- Results of PAH clinical trials, such as the SERAPHIN² trial of macitentan, are helping increase the understanding of the positive impact of drug treatment on patients' health related quality of life (HRQoL).
- However, there is a lack of patient reported data on the impact of PAH-CHD across different stages of the disease, as categorised by New York Heart Association Functional Class (NYHA FC), a measure of PAH disease severity ranging from FC I, no limitation of usual activity to FC IV, unable to perform any physical activity.

Aim

 This study aimed to understand the relationship between functional class (FC) and HRQoL in PAH-CHD patients across the United States (US) in a real-world setting.

METHODS

- Data were drawn from the Adelphi PAH-CHD Disease-Specific Programme TM (DSP) 3 , a point-in-time survey of pulmonologists and cardiologists and their consulting PAH-CHD patients in the US, conducted between November 2021 and May 2022. Physicians returned data on 1-2 consecutively consulting patients.
- A subset of the same patients voluntarily completed the 5-level version of the EuroQol 5-dimension (EQ-5D-5L) instrument which captured two measures of HRQoL: EQ-5D-visual analogue scale (EQ-5D-VAS, range 0-100 with higher scores indicating a better health state) and EQ-5D utility score (range 0-1 with higher scores indicating a greater quality of life).^{4,5} These patients also completed the emPHasis-10⁶, a disease specific measure of HRQoL (range 0-50, higher scores indicating poorer HRQoL).
- Analyses were generated by the overall population and by physician-reported FC status. Patients were split into FC class I and class II/III (due to lower base sizes). T-tests were utilized to compare HRQoL scoring across FC. A bivariate linear regression was used to explore the relationship between hospitalisations and HRQoL scores. Data are shown as mean and standard deviation or n number and % of base.
- Pearl IRB exemption determination was granted on 11/16/2021 (Protocol #21-ADRW-125).

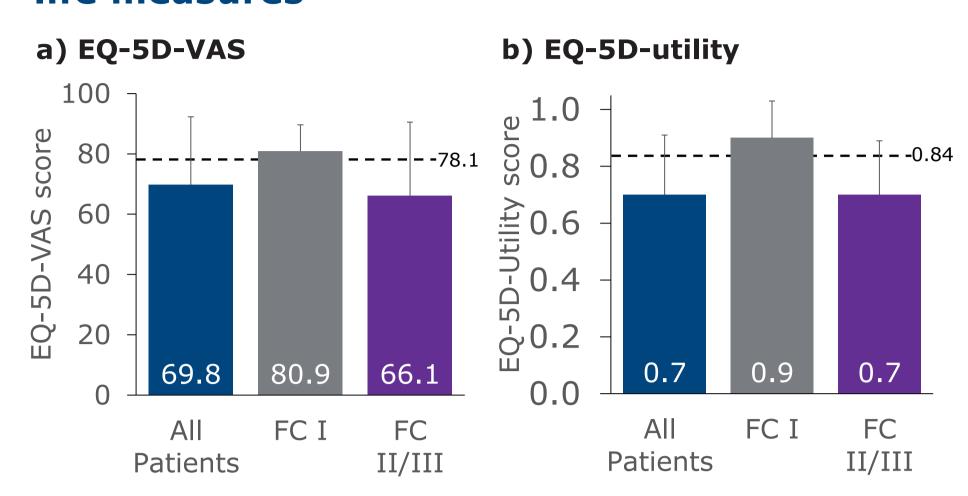
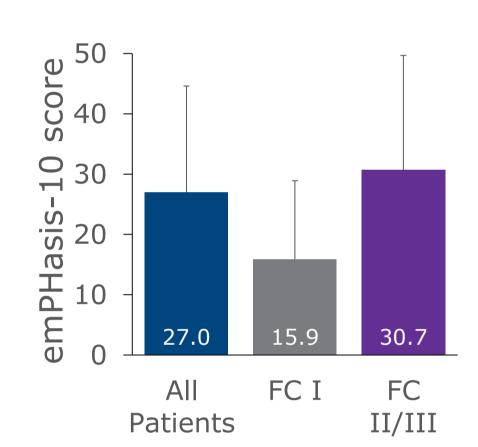

RESULTS

Table 1. Physician-reported characteristics

	All patients (n=56)	FC I (n=14)	FC II/III (n=42)
Patient age, mean (sd)	38.2 (17.6)	40.3 (13.0)	37.5 (19.0)
Patient sex, n (%)			
Male	39 (70)	11 (79)	28 (67)
CHD subtype, n (%)			
Eisenmenger syndrome	5 (9)	-	5 (12)
PAH associated with systemic- to-pulmonary shunts	9 (16)	1 (7)	8 (19)
PAH with small/coincidental defects	1 (2)	1(7)	-
PAH after corrective cardiac surgery	24 (43)	7 (50)	17 (40)
Palliated single ventricle	17 (30)	5 (36)	12 (29)
NYHA Functional Classification, n (%)			
Class I – No limitation of usual physical activity	14 (25)	14 (100)	-
Class II – Mild limitation of physical activity	38 (68)	-	38 (90)
Class III – Marked limitation of physical activity	4 (7)	_	4 (10)
Class IV – Unable to perform any physical activity	-	-	-
BMI, mean (sd)	26.3 (4.8)	23.2 (2.8)	27.3(4.9)
Ethnicity, n (%)			
White/Caucasian	45 (80	13 (93)	32 (76)
African American	7 (12)	-	7 (17)
Hispanic/Latino	2 (4)	-	2 (5)
Other	2 (4)	1 (7)	1 (2)
Body mass index, BMI; congenital heart disease, CHD; New York Heart Association,			

NYHA; pulmonary arterial hypertension, PAH; standard deviation, sd.


Figure 1. EQ-5D-5L health related quality of life measures

--- Age-matched United States EQ-5D population norms⁷

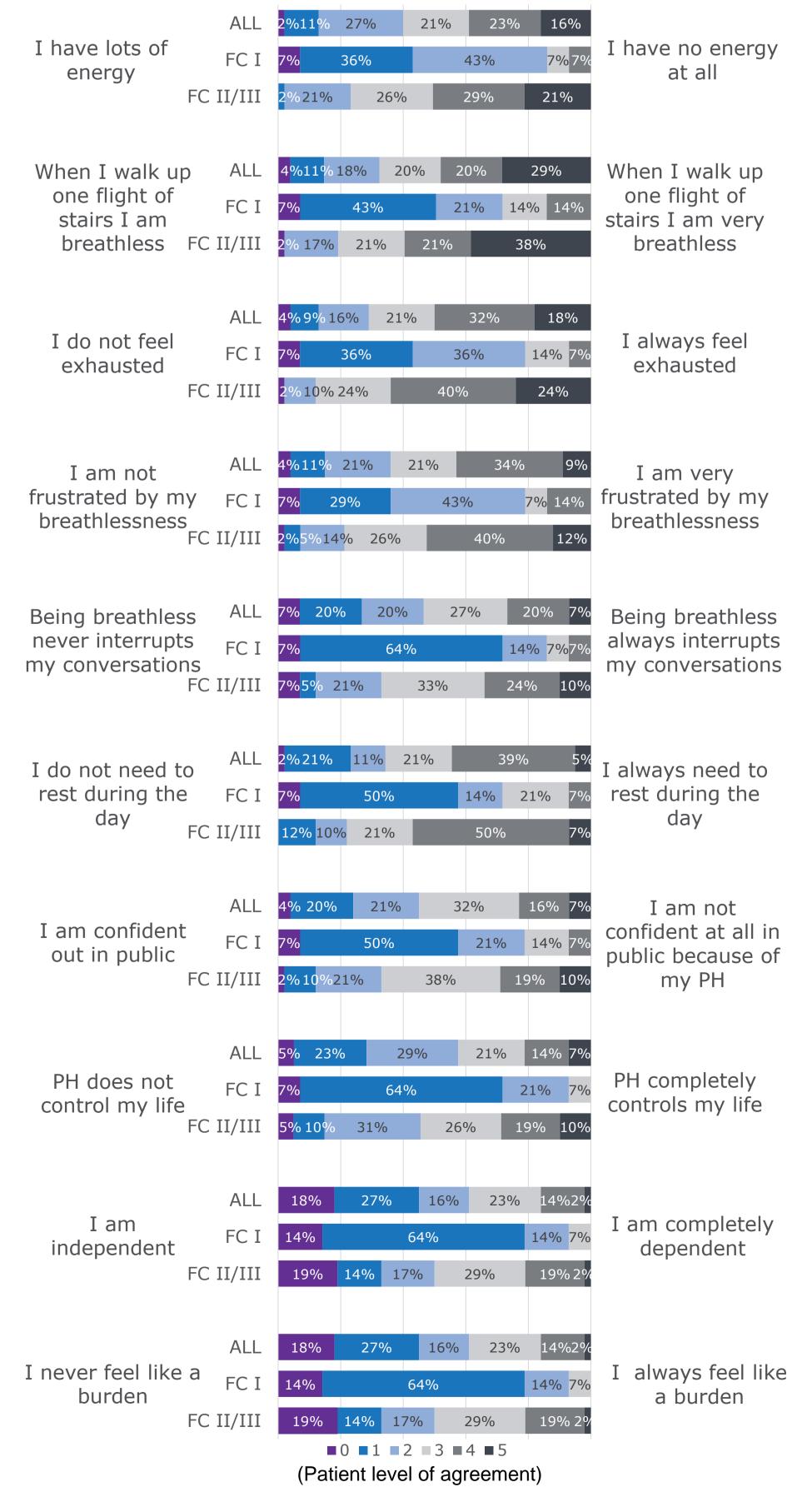

In both the EQ-5D-VAS (Figure 1a) and EQ-5D-utility scores (Figure 1b), there was a significant association of FC with quality of life (p=0.03 and p<0.0001, respectively). Patients with higher FC reported worse quality of life, which was notably below matched population norms for these measures.

Figure 2. emPHasis-10 health-related quality of life measure

The PAH-specific emPHasis-10 measure also showed significantly worse HRQoL for those with a higher FC (p<0.0001). This difference was larger than the reported minimally important difference (MID) of 6.0 points⁸ (Figure 2).

Figure 3. emPHasis 10 breakdown


Those with FC II/III PAH-CHD frequently report being adversely affected to a large degree by their disease across a wide range of areas of daily life (Figure 3).

Figure 4. Association of time to diagnosis on health-related quality of life

Patients who had a longer time between first symptoms and a diagnosis of PAH reported worse current HRQoL, as measured on the emPHasis-10 scale (Figure 4).

Figure 5. Association of PAH-related hospitalization number on health-related quality of life

Note: number of hospitalizations not known for all patients

Higher numbers of PAH-related hospitalizations were significantly correlated with worse emPHasis-10 scores $(r^2=0.17, p<0.0001)$, with each additional hospitalization being associated with a worsening of 6.3 points, more than the MID of 6.0 points (Figure 5).

CONCLUSIONS

- **HRQoL** burden increases with higher FC classification, showing differences larger than the reported MID
- A longer time to diagnosis and a higher number of PAH-related hospitalizations were associated with poorer HRQoL
- Results demonstrate the importance of regular HRQoL assessment across the PAH-**CHD** disease trajectory
- Ongoing inclusion of HRQoL measures, as an end point in clinical trials, will help improve the understanding of drug therapy and their impact on patient's QoL

LIMITATIONS

- This DSP survey consisted of patients with a physician-confirmed diagnosis of PAH-CHD, diagnosis via right heart catheterization was not required for inclusion in the survey. It is therefore possible that included patients may have had a PAH misdiagnosis.
- Physicians were asked to provide data for a consecutive series of patients to avoid selection bias, but no formal patient selection verification procedures were in place.
- Participating patients may not reflect the general PAH-CHD population as those visiting their physician are more often are more likely to be included, and may be more severely affected.

References

- 1. Goldstein et al. *Cardiol Clin* **40**(1):55-67 (2022)
- 2. Mehta et al. *Chest* **151**(1): 106-118 (2017)
- 3. Anderson et al. Curr Med Res Opin **24**(11): 3063-3072 (2008) 4. The EuroQol Group. *Health Policy* **16**(3):199-208 (1990)
- 5. Brooks. *Health Policy* **37**(1):53-72 (1996) 6. Yorke et al. *Eur Respir J* **43**(4):1106-1113 (2014)
- 7. Jiang et al. *Qual Life Res* **30**, 803–816 (2021)
- 8. Borgese et al. *Eur Respir J* **57**(2) (2021)